/* * Copyright (c) 2011-2016, Peter Abeles. All Rights Reserved. * * This file is part of BoofCV (http://boofcv.org). * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package boofcv.abst.feature.detect.intensity; import boofcv.alg.misc.GImageMiscOps; import boofcv.core.image.GeneralizedImageOps; import boofcv.struct.image.GrayF32; import boofcv.struct.image.ImageGray; import org.junit.Test; import java.util.ArrayList; import java.util.List; import java.util.Random; import static org.junit.Assert.assertTrue; /** * Unit tests for implementators of {@link GeneralFeatureIntensity}. * * @author Peter Abeles */ public abstract class ChecksGeneralFeatureIntensity<I extends ImageGray, D extends ImageGray> { public List<Class> listInputTypes = new ArrayList<>(); public List<Class> listDerivTypes = new ArrayList<>(); Random rand = new Random(234); int width = 30; int height = 40; I input; D derivX,derivY,derivXX,derivYY,derivXY; public void addTypes( Class inputType , Class derivType ) { listInputTypes.add( inputType ); listDerivTypes.add( derivType ); } public abstract GeneralFeatureIntensity<I,D> createAlg(Class<I> imageType, Class<D> derivType); /** * For features which do not process the image border, the border should have a response of zero. * A bug was found where if the input image size was changed the border would have "residual" * values from past runs and not be zero. */ @SuppressWarnings("unchecked") @Test public void checkReshapeBorder() { for( int i = 0; i < listInputTypes.size(); i++ ) { checkReshapeBorder( listInputTypes.get(i), listDerivTypes.get(i)); } } public void checkReshapeBorder( Class<I> imageType , Class<D> derivType ) { randomInit(imageType,derivType,width, height); GeneralFeatureIntensity<I,D> alg = createAlg(imageType,derivType); alg.process(input,derivX,derivY,derivXX,derivYY,derivXY); GrayF32 intensity = alg.getIntensity(); int r = alg.getIgnoreBorder(); checkBorderZero(intensity, r); // process again with smaller images randomInit(imageType,derivType,width-1, height-1); alg.process(input, derivX, derivY, derivXX, derivYY, derivXY); intensity = alg.getIntensity(); checkBorderZero(intensity, r); } private void randomInit(Class<I> imageType , Class<D> derivType , int width, int height) { input = GeneralizedImageOps.createSingleBand(imageType, width, height); derivX = GeneralizedImageOps.createSingleBand(derivType,width,height); derivY = GeneralizedImageOps.createSingleBand(derivType,width,height); derivXX = GeneralizedImageOps.createSingleBand(derivType,width,height); derivYY = GeneralizedImageOps.createSingleBand(derivType,width,height); derivXY = GeneralizedImageOps.createSingleBand(derivType,width,height); GImageMiscOps.fillUniform(input, rand, 0, 255); GImageMiscOps.fillUniform(derivX, rand, -100, 100); GImageMiscOps.fillUniform(derivY, rand, -100, 100); GImageMiscOps.fillUniform(derivXX, rand, -100, 100); GImageMiscOps.fillUniform(derivYY, rand, -100, 100); GImageMiscOps.fillUniform(derivXY, rand, -100, 100); } private void checkBorderZero(GrayF32 intensity, int r) { for( int y = 0; y < intensity.height; y++ ) { if( y >= r && y < intensity.height-r ) continue; for( int x = 0; x < intensity.width; x++ ) { if( x >= r && x < intensity.width-r ) continue; assertTrue(0 == intensity.get(x, y)); } } } }