/*
* Copyright (c) 2011-2016, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.abst.feature.detect.intensity;
import boofcv.alg.misc.GImageMiscOps;
import boofcv.core.image.GeneralizedImageOps;
import boofcv.struct.image.GrayF32;
import boofcv.struct.image.ImageGray;
import org.junit.Test;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import static org.junit.Assert.assertTrue;
/**
* Unit tests for implementators of {@link GeneralFeatureIntensity}.
*
* @author Peter Abeles
*/
public abstract class ChecksGeneralFeatureIntensity<I extends ImageGray, D extends ImageGray>
{
public List<Class> listInputTypes = new ArrayList<>();
public List<Class> listDerivTypes = new ArrayList<>();
Random rand = new Random(234);
int width = 30;
int height = 40;
I input;
D derivX,derivY,derivXX,derivYY,derivXY;
public void addTypes( Class inputType , Class derivType ) {
listInputTypes.add( inputType );
listDerivTypes.add( derivType );
}
public abstract GeneralFeatureIntensity<I,D> createAlg(Class<I> imageType, Class<D> derivType);
/**
* For features which do not process the image border, the border should have a response of zero.
* A bug was found where if the input image size was changed the border would have "residual"
* values from past runs and not be zero.
*/
@SuppressWarnings("unchecked")
@Test
public void checkReshapeBorder() {
for( int i = 0; i < listInputTypes.size(); i++ ) {
checkReshapeBorder( listInputTypes.get(i), listDerivTypes.get(i));
}
}
public void checkReshapeBorder( Class<I> imageType , Class<D> derivType ) {
randomInit(imageType,derivType,width, height);
GeneralFeatureIntensity<I,D> alg = createAlg(imageType,derivType);
alg.process(input,derivX,derivY,derivXX,derivYY,derivXY);
GrayF32 intensity = alg.getIntensity();
int r = alg.getIgnoreBorder();
checkBorderZero(intensity, r);
// process again with smaller images
randomInit(imageType,derivType,width-1, height-1);
alg.process(input, derivX, derivY, derivXX, derivYY, derivXY);
intensity = alg.getIntensity();
checkBorderZero(intensity, r);
}
private void randomInit(Class<I> imageType , Class<D> derivType , int width, int height) {
input = GeneralizedImageOps.createSingleBand(imageType, width, height);
derivX = GeneralizedImageOps.createSingleBand(derivType,width,height);
derivY = GeneralizedImageOps.createSingleBand(derivType,width,height);
derivXX = GeneralizedImageOps.createSingleBand(derivType,width,height);
derivYY = GeneralizedImageOps.createSingleBand(derivType,width,height);
derivXY = GeneralizedImageOps.createSingleBand(derivType,width,height);
GImageMiscOps.fillUniform(input, rand, 0, 255);
GImageMiscOps.fillUniform(derivX, rand, -100, 100);
GImageMiscOps.fillUniform(derivY, rand, -100, 100);
GImageMiscOps.fillUniform(derivXX, rand, -100, 100);
GImageMiscOps.fillUniform(derivYY, rand, -100, 100);
GImageMiscOps.fillUniform(derivXY, rand, -100, 100);
}
private void checkBorderZero(GrayF32 intensity, int r) {
for( int y = 0; y < intensity.height; y++ ) {
if( y >= r && y < intensity.height-r )
continue;
for( int x = 0; x < intensity.width; x++ ) {
if( x >= r && x < intensity.width-r )
continue;
assertTrue(0 == intensity.get(x, y));
}
}
}
}