/* * Copyright (c) 2011-2016, Peter Abeles. All Rights Reserved. * * This file is part of BoofCV (http://boofcv.org). * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package boofcv.alg.feature.describe; import boofcv.alg.misc.GImageMiscOps; import boofcv.core.image.GeneralizedImageOps; import boofcv.struct.image.GrayF32; import boofcv.struct.image.ImageGray; import boofcv.struct.sparse.GradientValue; import boofcv.struct.sparse.SparseScaleGradient; import java.util.Random; /** * @author Peter Abeles */ public class BenchmarkSurfDescribeOps<T extends ImageGray> { static int imgWidth = 640; static int imgHeight = 480; Class<T> imageType; T input; // parameters for region gradient double tl_x = 100.0; double tl_y = 120.3; double period = 1.2; int regionSize = 20; double kernelWidth = 5; double derivX[] = new double[ regionSize*regionSize ]; double derivY[] = new double[ regionSize*regionSize ]; // kernel used to manually sample SparseScaleGradient<T,?> g; public BenchmarkSurfDescribeOps() { this((Class<T>)GrayF32.class); } public BenchmarkSurfDescribeOps(Class<T> imageType) { this.imageType = imageType; Random rand = new Random(234); input = GeneralizedImageOps.createSingleBand(imageType,imgWidth,imgHeight); GImageMiscOps.fillUniform(input, rand, 0, 1); g = SurfDescribeOps.createGradient(false,imageType); g.setWidth(kernelWidth); g.setImage(input); } public int timeGradient_NotHaar(int reps) { for( int i = 0; i < reps; i++ ) SurfDescribeOps.gradient(input, tl_x, tl_y, period, regionSize, kernelWidth, false, derivX, derivY); return 0; } public int timeGradient_Haar(int reps) { for( int i = 0; i < reps; i++ ) SurfDescribeOps.gradient(input, tl_x , tl_y , period, regionSize, kernelWidth,true,derivX,derivY); return 0; } /** * Sample the gradient using SparseImageGradient instead of the completely * unrolled code */ public int timeGradient_Sample(int reps) { for( int i = 0; i < reps; i++ ) { double tl_x = this.tl_x + 0.5; double tl_y = this.tl_y + 0.5; int j = 0; for( int y = 0; y < regionSize; y++ ) { for( int x = 0; x < regionSize; x++ , j++) { int xx = (int)(tl_x + x * period); int yy = (int)(tl_y + y * period); GradientValue deriv = g.compute(xx,yy); derivX[j] = deriv.getX(); derivY[j] = deriv.getY(); } } } return 0; } /** * Sample the gradient, but just for boundary conditions */ public int timeGradient_SampleCheck(int reps) { for( int i = 0; i < reps; i++ ) { double tl_x = this.tl_x + 0.5; double tl_y = this.tl_y + 0.5; int j = 0; for( int y = 0; y < regionSize; y++ ) { for( int x = 0; x < regionSize; x++ , j++) { int xx = (int)(tl_x + x * period); int yy = (int)(tl_y + y * period); if( g.isInBounds(xx,yy)) { GradientValue deriv = g.compute(xx,yy); derivX[j] = deriv.getX(); derivY[j] = deriv.getY(); } } } } return 0; } public static void main( String args[] ) { System.out.println("========= Profile Image Size "+ imgWidth +" x "+ imgHeight +" =========="); // Runner.main(BenchmarkSurfDescribeOps.class, args); } }