/* * Copyright (c) 2011-2016, Peter Abeles. All Rights Reserved. * * This file is part of BoofCV (http://boofcv.org). * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package boofcv.alg.background.stationary; import boofcv.alg.InputSanityCheck; import boofcv.alg.misc.ImageMiscOps; import boofcv.core.image.FactoryGImageMultiBand; import boofcv.core.image.GImageMultiBand; import boofcv.struct.image.GrayU8; import boofcv.struct.image.ImageInterleaved; import boofcv.struct.image.ImageType; import boofcv.struct.image.InterleavedF32; /** * Implementation of {@link BackgroundStationaryGaussian} for {@link ImageInterleaved}. * * @author Peter Abeles */ public class BackgroundStationaryGaussian_IL<T extends ImageInterleaved> extends BackgroundStationaryGaussian<T> { // wrappers which provide abstraction across image types protected GImageMultiBand inputWrapper; protected GImageMultiBand bgWrapper; // storage for multi-band pixel values protected float[] inputPixel; protected float[] bgPixel; // background is composed of bands*2 channels. even = mean, odd = variance InterleavedF32 background; /** * Configurations background removal. * * @param learnRate Specifies how quickly the background is updated. 0 = static 1.0 = instant. Try 0.05 * @param threshold Threshold for background. Consult a chi-square table for reasonably values. * 10 to 16 for 1 to 3 bands. * @param imageType Type of input image. */ public BackgroundStationaryGaussian_IL(float learnRate, float threshold, ImageType<T> imageType) { super(learnRate, threshold, imageType); int numBands = imageType.getNumBands(); background = new InterleavedF32(1,1,2*numBands); bgWrapper = FactoryGImageMultiBand.create(background.getImageType()); bgWrapper.wrap(background); inputWrapper = FactoryGImageMultiBand.create(imageType); inputPixel = new float[numBands]; bgPixel = new float[numBands*2]; } @Override public void reset() { background.reshape(1,1); } @Override public void updateBackground( T frame) { inputWrapper.wrap(frame); if( background.width == 1 ) { background.reshape(frame.width, frame.height); for (int y = 0; y < frame.height; y++) { for (int x = 0; x < frame.width; x++) { inputWrapper.get(x,y,inputPixel); for (int i = 0; i < frame.numBands; i++) { bgPixel[i*2] = inputPixel[i]; bgPixel[i*2+1] = initialVariance; } bgWrapper.set(x,y,bgPixel); } } return; } else { InputSanityCheck.checkSameShape(background, frame); } int numBands = background.getNumBands()/2; float minusLearn = 1.0f - learnRate; int indexBG = 0; for (int y = 0; y < background.height; y++) { int indexInput = frame.startIndex + y*frame.stride; int end = indexInput + frame.width*numBands; while( indexInput < end ) { inputWrapper.getF(indexInput, inputPixel); for (int band = 0; band < numBands; band++) { float inputValue = inputPixel[band]; float meanBG = background.data[indexBG]; float varianceBG = background.data[indexBG+1]; float diff = meanBG-inputValue; background.data[indexBG++] = minusLearn*meanBG + learnRate*inputValue; background.data[indexBG++] = minusLearn*varianceBG + learnRate*diff*diff; } indexInput += frame.numBands; } } } @Override public void segment( T frame, GrayU8 segmented) { if( background.width == 1 ) { ImageMiscOps.fill(segmented, unknownValue); return; } inputWrapper.wrap(frame); final int numBands = background.getNumBands()/2; float adjustedMinimumDifference = minimumDifference*numBands; int indexBG = 0; for (int y = 0; y < frame.height; y++) { int indexInput = frame.startIndex + y*frame.stride; int indexSegmented = segmented.startIndex + y*segmented.stride; int end = indexInput + frame.width*frame.numBands; while( indexInput < end ) { inputWrapper.getF(indexInput, inputPixel); float mahalanobis = 0; for (int band = 0; band < numBands; band++) { int indexBG_band = indexBG + band*2; float meanBG = background.data[indexBG_band]; float varBG = background.data[indexBG_band+1]; float diff = meanBG - inputPixel[band]; mahalanobis += diff * diff / varBG; } if (mahalanobis <= threshold) { segmented.data[indexSegmented] = 0; } else { if( minimumDifference == 0) { segmented.data[indexSegmented] = 1; } else { float sumAbsDiff = 0; for (int band = 0; band < numBands; band++) { int indexBG_band = indexBG + band*2; sumAbsDiff += Math.abs(background.data[indexBG_band] - inputPixel[band]); } if (sumAbsDiff >= adjustedMinimumDifference) segmented.data[indexSegmented] = 1; else segmented.data[indexSegmented] = 0; } } indexInput += frame.numBands; indexSegmented += 1; indexBG += background.numBands; } } } }