/* * Copyright (c) 2011-2016, Peter Abeles. All Rights Reserved. * * This file is part of BoofCV (http://boofcv.org). * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package boofcv.factory.segmentation; import boofcv.alg.interpolate.InterpolatePixelMB; import boofcv.alg.interpolate.InterpolatePixelS; import boofcv.alg.interpolate.InterpolationType; import boofcv.alg.segmentation.ComputeRegionMeanColor; import boofcv.alg.segmentation.fh04.FhEdgeWeights; import boofcv.alg.segmentation.fh04.SegmentFelzenszwalbHuttenlocher04; import boofcv.alg.segmentation.fh04.impl.*; import boofcv.alg.segmentation.ms.*; import boofcv.alg.segmentation.slic.*; import boofcv.alg.segmentation.watershed.WatershedVincentSoille1991; import boofcv.core.image.border.BorderType; import boofcv.factory.interpolate.FactoryInterpolation; import boofcv.struct.ConnectRule; import boofcv.struct.image.ImageBase; import boofcv.struct.image.ImageType; /** * Factory for low level segmentation algorithms. * * @author Peter Abeles */ public class FactorySegmentationAlg { /** * Creates an instance of {@link boofcv.alg.segmentation.ComputeRegionMeanColor} for the specified image type. * * @param imageType image type * @return ComputeRegionMeanColor */ public static <T extends ImageBase> ComputeRegionMeanColor<T> regionMeanColor(ImageType<T> imageType) { if( imageType.getFamily() == ImageType.Family.GRAY) { switch( imageType.getDataType() ) { case U8: return (ComputeRegionMeanColor)new ComputeRegionMeanColor.U8(); case F32: return (ComputeRegionMeanColor)new ComputeRegionMeanColor.F32(); } } else if( imageType.getFamily() == ImageType.Family.PLANAR) { int N = imageType.getNumBands(); switch( imageType.getDataType() ) { case U8: return (ComputeRegionMeanColor)new ComputeRegionMeanColor.PL_U8(N); case F32: return (ComputeRegionMeanColor)new ComputeRegionMeanColor.PL_F32(N); } } throw new IllegalArgumentException("Unknown imageType"); } /** * Creates an instance of {@link boofcv.alg.segmentation.ms.SegmentMeanShift}. Uniform distributions are used for spacial and color * weights. * * @param config Specify configuration for mean-shift * @param imageType Type of input image * @return SegmentMeanShift */ public static<T extends ImageBase> SegmentMeanShift<T> meanShift( ConfigSegmentMeanShift config, ImageType<T> imageType ) { if( config == null ) config = new ConfigSegmentMeanShift(); int spacialRadius = config.spacialRadius; float colorRadius = config.colorRadius; int maxIterations = 20; float convergenceTol = 0.1f; SegmentMeanShiftSearch<T> search; if( imageType.getFamily() == ImageType.Family.GRAY) { InterpolatePixelS interp = FactoryInterpolation.bilinearPixelS(imageType.getImageClass(), BorderType.EXTENDED); search = new SegmentMeanShiftSearchGray(maxIterations,convergenceTol,interp, spacialRadius,spacialRadius,colorRadius,config.fast); } else { InterpolatePixelMB interp = FactoryInterpolation.createPixelMB(0,255, InterpolationType.BILINEAR, BorderType.EXTENDED,(ImageType)imageType); search = new SegmentMeanShiftSearchColor(maxIterations,convergenceTol,interp, spacialRadius,spacialRadius,colorRadius,config.fast,imageType); } ComputeRegionMeanColor<T> regionColor = regionMeanColor(imageType); MergeRegionMeanShift merge = new MergeRegionMeanShift(spacialRadius/2+1,Math.max(1,colorRadius/2)); MergeSmallRegions<T> prune = config.minimumRegionSize >= 2 ? new MergeSmallRegions<>(config.minimumRegionSize, config.connectRule, regionColor) : null; return new SegmentMeanShift<>(search, merge, prune, config.connectRule); } public static <T extends ImageBase> FhEdgeWeights<T> weightsFelzenszwalb04( ConnectRule rule , ImageType<T> imageType) { if( imageType.getFamily() == ImageType.Family.GRAY) { if( rule == ConnectRule.FOUR ) { switch( imageType.getDataType() ) { case U8: return (FhEdgeWeights)new FhEdgeWeights4_U8(); case F32: return (FhEdgeWeights)new FhEdgeWeights4_F32(); } } else if( rule == ConnectRule.EIGHT ) { switch( imageType.getDataType() ) { case U8: return (FhEdgeWeights)new FhEdgeWeights8_U8(); case F32: return (FhEdgeWeights)new FhEdgeWeights8_F32(); } } } else if( imageType.getFamily() == ImageType.Family.PLANAR) { int N = imageType.getNumBands(); if( rule == ConnectRule.FOUR ) { switch( imageType.getDataType() ) { case U8: return (FhEdgeWeights)new FhEdgeWeights4_PLU8(N); case F32: return (FhEdgeWeights)new FhEdgeWeights4_PLF32(N); } } else if( rule == ConnectRule.EIGHT ) { switch( imageType.getDataType() ) { case U8: return (FhEdgeWeights)new FhEdgeWeights8_PLU8(N); case F32: return (FhEdgeWeights)new FhEdgeWeights8_PLF32(N); } } } throw new IllegalArgumentException("Unknown imageType or connect rule"); } public static<T extends ImageBase> SegmentFelzenszwalbHuttenlocher04<T> fh04(ConfigFh04 config, ImageType<T> imageType) { if( config == null ) config = new ConfigFh04(); FhEdgeWeights<T> edgeWeights = weightsFelzenszwalb04(config.connectRule,imageType); SegmentFelzenszwalbHuttenlocher04<T> alg = new SegmentFelzenszwalbHuttenlocher04<>(config.K, config.minimumRegionSize, edgeWeights); if( config.approximateSortBins > 0 ) { alg.configureApproximateSort(config.approximateSortBins); } return alg; } public static<T extends ImageBase> SegmentSlic<T> slic( ConfigSlic config , ImageType<T> imageType ) { if( config == null ) throw new IllegalArgumentException("No default configuration since the number of segments must be specified."); if( imageType.getFamily() == ImageType.Family.GRAY) { switch( imageType.getDataType() ) { case U8: return (SegmentSlic)new SegmentSlic_U8(config.numberOfRegions, config.spacialWeight,config.totalIterations,config.connectRule); case F32: return (SegmentSlic)new SegmentSlic_F32(config.numberOfRegions, config.spacialWeight,config.totalIterations,config.connectRule); } } else if( imageType.getFamily() == ImageType.Family.PLANAR) { int N = imageType.getNumBands(); switch( imageType.getDataType() ) { case U8: return (SegmentSlic)new SegmentSlic_PlU8(config.numberOfRegions, config.spacialWeight,config.totalIterations,config.connectRule,N); case F32: return (SegmentSlic)new SegmentSlic_PlF32(config.numberOfRegions, config.spacialWeight,config.totalIterations,config.connectRule,N); } } throw new IllegalArgumentException("Unknown imageType or connect rule"); } public static WatershedVincentSoille1991 watershed( ConnectRule rule ) { if( rule == ConnectRule.FOUR ) return new WatershedVincentSoille1991.Connect4(); else if( rule == ConnectRule.EIGHT ) return new WatershedVincentSoille1991.Connect8(); else throw new IllegalArgumentException("Unknown connectivity rule"); } }