/* * Copyright (c) 2011-2016, Peter Abeles. All Rights Reserved. * * This file is part of BoofCV (http://boofcv.org). * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package boofcv.alg.background.stationary; import boofcv.alg.InputSanityCheck; import boofcv.alg.background.moving.BackgroundMovingGaussian; import boofcv.alg.misc.GImageMiscOps; import boofcv.alg.misc.ImageMiscOps; import boofcv.core.image.FactoryGImageGray; import boofcv.core.image.GConvertImage; import boofcv.core.image.GImageGray; import boofcv.struct.image.*; /** * Implementation of {@link BackgroundMovingGaussian} for {@link ImageGray}. * * @author Peter Abeles */ public class BackgroundStationaryGaussian_SB<T extends ImageGray> extends BackgroundStationaryGaussian<T> { // wrappers which provide abstraction across image types protected GImageGray inputWrapper; // background is composed of two channels. 0 = mean, 1 = variance Planar<GrayF32> background = new Planar<>(GrayF32.class,1,1,2); /** * Configurations background removal. * * @param learnRate Specifies how quickly the background is updated. 0 = static 1.0 = instant. Try 0.05 * @param threshold Threshold for background. Try 10. * @param imageType Type of input image. */ public BackgroundStationaryGaussian_SB(float learnRate, float threshold, Class<T> imageType) { super(learnRate, threshold, ImageType.single(imageType)); inputWrapper = FactoryGImageGray.create(imageType); } @Override public void reset() { background.reshape(1,1); } @Override public void updateBackground( T frame) { if( background.width == 1 ) { background.reshape(frame.width, frame.height); GConvertImage.convert(frame, background.getBand(0)); GImageMiscOps.fill(background.getBand(1),initialVariance); return; } else { InputSanityCheck.checkSameShape(background, frame); } inputWrapper.wrap(frame); float minusLearn = 1.0f - learnRate; GrayF32 backgroundMean = background.getBand(0); GrayF32 backgroundVar = background.getBand(1); int indexBG = 0; for (int y = 0; y < background.height; y++) { int indexInput = frame.startIndex + y*frame.stride; int end = indexInput + frame.width; while( indexInput < end ) { float inputValue = inputWrapper.getF(indexInput); float meanBG = backgroundMean.data[indexBG]; float varianceBG = backgroundVar.data[indexBG]; float diff = meanBG-inputValue; backgroundMean.data[indexBG] = minusLearn*meanBG + learnRate*inputValue; backgroundVar.data[indexBG] = minusLearn*varianceBG + learnRate*diff*diff; indexBG++; indexInput++; } } } @Override public void segment( T frame, GrayU8 segmented) { if( background.width == 1 ) { ImageMiscOps.fill(segmented, unknownValue); return; } InputSanityCheck.checkSameShape(background,frame,segmented); inputWrapper.wrap(frame); GrayF32 backgroundMean = background.getBand(0); GrayF32 backgroundVar = background.getBand(1); int indexBG = 0; for (int y = 0; y < frame.height; y++) { int indexInput = frame.startIndex + y*frame.stride; int indexSegmented = segmented.startIndex + y*segmented.stride; int end = indexInput + frame.width; while( indexInput < end ) { float pixelFrame = inputWrapper.getF(indexInput); float meanBG = backgroundMean.data[indexBG]; float varBG = backgroundVar.data[indexBG]; float diff = meanBG - pixelFrame; float chisq = diff*diff/varBG; if (chisq <= threshold) { segmented.data[indexSegmented] = 0; } else { if( diff >= minimumDifference || -diff >= minimumDifference ) segmented.data[indexSegmented] = 1; else segmented.data[indexSegmented] = 0; } indexInput++; indexSegmented++; indexBG++; } } } }