/*
* Copyright (c) 2011-2016, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.denoise;
import boofcv.alg.denoise.wavelet.UtilDenoiseWavelet;
import boofcv.alg.misc.ImageMiscOps;
import boofcv.struct.image.GrayF32;
import org.junit.Test;
import java.util.Random;
import static org.junit.Assert.assertEquals;
/**
* @author Peter Abeles
*/
public class TestUtilDenoiseWavelet {
Random rand = new Random(234235);
int width = 20;
int height = 30;
@Test
public void estimateNoiseStdDev() {
GrayF32 image = new GrayF32(width,height);
double sigma = 12;
ImageMiscOps.addGaussian(image,rand,sigma,-10000,10000);
double found = UtilDenoiseWavelet.estimateNoiseStdDev(image,null);
assertEquals(sigma,found,1);
}
@Test
public void universalThreshold() {
GrayF32 image = new GrayF32(width,height);
double sigma = 12;
double found = UtilDenoiseWavelet.universalThreshold(image,sigma);
double expected = sigma*Math.sqrt(2.0*Math.log(height));
assertEquals(expected,found,1e-4);
}
}