/* * Copyright (c) 2011-2016, Peter Abeles. All Rights Reserved. * * This file is part of BoofCV (http://boofcv.org). * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package boofcv.alg.denoise; import boofcv.alg.denoise.wavelet.UtilDenoiseWavelet; import boofcv.alg.misc.ImageMiscOps; import boofcv.struct.image.GrayF32; import org.junit.Test; import java.util.Random; import static org.junit.Assert.assertEquals; /** * @author Peter Abeles */ public class TestUtilDenoiseWavelet { Random rand = new Random(234235); int width = 20; int height = 30; @Test public void estimateNoiseStdDev() { GrayF32 image = new GrayF32(width,height); double sigma = 12; ImageMiscOps.addGaussian(image,rand,sigma,-10000,10000); double found = UtilDenoiseWavelet.estimateNoiseStdDev(image,null); assertEquals(sigma,found,1); } @Test public void universalThreshold() { GrayF32 image = new GrayF32(width,height); double sigma = 12; double found = UtilDenoiseWavelet.universalThreshold(image,sigma); double expected = sigma*Math.sqrt(2.0*Math.log(height)); assertEquals(expected,found,1e-4); } }