/*
* Copyright (c) 2011-2016, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.transform.pyramid;
import boofcv.alg.filter.convolve.ConvolveNormalized;
import boofcv.factory.filter.kernel.FactoryKernelGaussian;
import boofcv.struct.convolve.Kernel1D_F32;
import boofcv.struct.image.GrayF32;
import boofcv.struct.pyramid.ImagePyramid;
import boofcv.testing.BoofTesting;
import org.junit.Test;
import static org.junit.Assert.assertEquals;
/**
* @author Peter Abeles
*/
public class TestPyramidDiscreteSampleBlur extends GenericPyramidTests<GrayF32> {
public TestPyramidDiscreteSampleBlur() {
super(GrayF32.class);
}
/**
* Compares update to a convolution and sub-sampling of upper layers.
*/
@Test
public void _update() {
GrayF32 input = new GrayF32(width,height);
BoofTesting.checkSubImage(this, "_update", true, input);
}
public void _update(GrayF32 input) {
Kernel1D_F32 kernel = FactoryKernelGaussian.gaussian(Kernel1D_F32.class,-1,3);
GrayF32 convImg = new GrayF32(width, height);
GrayF32 convImg2 = new GrayF32(width/2, height/2);
GrayF32 storage = new GrayF32(width, height);
ConvolveNormalized.horizontal(kernel,input,storage);
ConvolveNormalized.vertical(kernel,storage,convImg);
PyramidDiscreteSampleBlur<GrayF32> alg =
new PyramidDiscreteSampleBlur<>(kernel,3,GrayF32.class,true,new int[]{1,2,4});
alg.process(input);
// top layer should be the same as the input layer
BoofTesting.assertEquals(input, alg.getLayer(0), 1e-4f);
// second layer should have the same values as the convolved image
for (int i = 0; i < height; i += 2) {
for (int j = 0; j < width; j += 2) {
float a = convImg.get(j, i);
float b = alg.getLayer(1).get(j / 2, i / 2);
assertEquals(a, b, 1e-4);
}
}
storage.reshape(width/2,height/2);
ConvolveNormalized.horizontal(kernel,alg.getLayer(1),storage);
ConvolveNormalized.vertical(kernel,storage,convImg2);
// second layer should have the same values as the second convolved image
for (int i = 0; i < height/2; i += 2) {
for (int j = 0; j < width/2; j += 2) {
float a = convImg2.get(j, i);
float b = alg.getLayer(2).get(j / 2, i / 2);
assertEquals(j+" "+j,a, b, 1e-4);
}
}
}
/**
* Makes sure the amount of Gaussian blur in each level is correctly computed
*/
@Test
public void checkSigmas() {
Kernel1D_F32 kernel = FactoryKernelGaussian.gaussian(Kernel1D_F32.class,-1,3);
PyramidDiscreteSampleBlur<GrayF32> alg =
new PyramidDiscreteSampleBlur<>(kernel,3,GrayF32.class,true,new int[]{1,2,4});
assertEquals(0,alg.getSigma(0),1e-8);
assertEquals(3,alg.getSigma(1),1e-8);
assertEquals(6.7082,alg.getSigma(2),1e-3);
alg = new PyramidDiscreteSampleBlur<>(kernel,3,GrayF32.class,true,new int[]{2,4,8});
assertEquals(0,alg.getSigma(0),1e-8);
assertEquals(6,alg.getSigma(1),1e-8);
}
@Override
protected ImagePyramid<GrayF32> createPyramid(int... scales) {
Kernel1D_F32 kernel = FactoryKernelGaussian.gaussian(Kernel1D_F32.class,-1,3);
return new PyramidDiscreteSampleBlur<>(kernel,3,GrayF32.class,true,new int[]{1,2,4});
}
}