/* * Copyright (c) 2011-2016, Peter Abeles. All Rights Reserved. * * This file is part of BoofCV (http://boofcv.org). * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package boofcv.alg.transform.wavelet.impl; import boofcv.misc.AutoTypeImage; import boofcv.misc.CodeGeneratorBase; import boofcv.misc.CodeGeneratorUtil; import java.io.FileNotFoundException; import java.io.FileOutputStream; import java.io.PrintStream; /** * @author Peter Abeles */ public class GenerateImplWaveletTransformNaive extends CodeGeneratorBase { String className = "ImplWaveletTransformNaive"; PrintStream out; AutoTypeImage imageIn; AutoTypeImage imageOut; String genName; String sumType; public GenerateImplWaveletTransformNaive() throws FileNotFoundException { out = new PrintStream(new FileOutputStream(className + ".java")); } @Override public void generate() throws FileNotFoundException { printPreamble(); printFuncs(AutoTypeImage.F32, AutoTypeImage.F32); printFuncs(AutoTypeImage.I, AutoTypeImage.I); out.print("\n" + "}\n"); } private void printPreamble() { out.print(CodeGeneratorUtil.copyright); out.print("package boofcv.alg.wavelet.impl;\n" + "\n" + "import boofcv.alg.wavelet.UtilWavelet;\n" + "import boofcv.struct.wavelet.WlBorderCoef;\n"+ "import boofcv.struct.wavelet.WlCoef_F32;\n" + "import boofcv.struct.wavelet.WlCoef_I32;\n" + "import boofcv.core.image.border.BorderIndex1D;\n" + "import boofcv.struct.image.GrayF32;\n" + "import boofcv.struct.image.ImageInteger;\n" + "\n" + "\n" + "/**\n" + " * <p>\n" + " * Unoptimized and simplistic implementation of a forward and inverse wavelet transform across one\n" + " * level. Primary used for validation testing.\n" + " * </p>\n" + " *\n" + " * <p>\n" + " * DO NOT MODIFY: This class was automatically generated by {@link GenerateImplWaveletTransformNaive}.\n" + " * </p>\n" + " *\n" + " * @author Peter Abeles\n" + " */\n" + "public class "+className+" {\n\n"); } private void printFuncs( AutoTypeImage imageIn , AutoTypeImage imageOut ) { this.imageIn = imageIn; this.imageOut = imageOut; if( imageIn.isInteger() ) genName = "I32"; else genName = "F"+imageIn.getNumBits();; sumType = imageIn.getSumType(); printHorizontal(); printVertical(); printHorizontalInverse(); printVerticalInverse(); } private void printHorizontal() { out.print("\t/**\n" + "\t * Performs a single level wavelet transform along the horizontal axis.\n" + "\t *\n" + "\t * @param coefficients Description of wavelet coefficients.\n" + "\t * @param input Input image which is being transform. Not modified.\n" + "\t * @param output where the output is written to. Modified\n" + "\t */\n" + "\tpublic static void horizontal( BorderIndex1D border , WlCoef_"+genName+" coefficients ,\n" + "\t\t\t\t\t\t\t\t "+imageIn.getSingleBandName()+" input , "+imageIn.getSingleBandName()+" output ) {\n" + "\n" + "\t\tUtilWavelet.checkShape(input,output);\n" + "\n" + "\t\tfinal int offsetA = coefficients.offsetScaling;\n" + "\t\tfinal int offsetB = coefficients.offsetWavelet;\n" + "\t\tfinal "+sumType+"[] alpha = coefficients.scaling;\n" + "\t\tfinal "+sumType+"[] beta = coefficients.wavelet;\n" + "\n" + "\t\tborder.setLength(input.width+input.width%2);\n" + "\n" + "\t\tfinal boolean isLarger = output.width > input.width;\n" + "\n" + "\t\tfor( int y = 0; y < input.height; y++ ) {\n" + "\t\t\tfor( int x = 0; x < input.width; x += 2 ) {\n" + "\n" + "\t\t\t\t"+sumType+" scale = 0;\n" + "\t\t\t\t"+sumType+" wavelet = 0;\n" + "\n" + "\t\t\t\tfor( int i = 0; i < alpha.length; i++ ) {\n" + "\t\t\t\t\tint xx = border.getIndex(x+i+offsetA);\n" + "\t\t\t\t\tif( isLarger && xx >= input.width )\n" + "\t\t\t\t\t\tcontinue;\n" + "\t\t\t\t\tscale += input.get(xx,y)*alpha[i];\n" + "\t\t\t\t}\n" + "\t\t\t\tfor( int i = 0; i < beta.length; i++ ) {\n" + "\t\t\t\t\tint xx = border.getIndex(x+i+offsetB);\n" + "\t\t\t\t\tif( isLarger && xx >= input.width )\n" + "\t\t\t\t\t\tcontinue;\n" + "\t\t\t\t\twavelet += input.get(xx,y)*beta[i];\n" + "\t\t\t\t}\n" + "\n" + "\t\t\t\tint outX = x/2;\n" + "\n"); if( imageIn.isInteger() ) { out.print("\t\t\t\tscale = 2*scale/coefficients.denominatorScaling;\n" + "\t\t\t\twavelet = 2*wavelet/coefficients.denominatorWavelet;\n" + "\n"); } out.print("\t\t\t\toutput.set(outX,y,scale);\n" + "\t\t\t\toutput.set(output.width/2 + outX , y , wavelet );\n" + "\t\t\t}\n" + "\t\t}\n" + "\t}\n\n"); } private void printVertical() { out.print("\t/**\n" + "\t * Performs a single level wavelet transform along the vertical axis.\n" + "\t *\n" + "\t * @param coefficients Description of wavelet coefficients.\n" + "\t * @param input Input image which is being transform. Not modified.\n" + "\t * @param output where the output is written to. Modified\n" + "\t */\n" + "\tpublic static void vertical( BorderIndex1D border , WlCoef_"+genName+" coefficients ,\n" + "\t\t\t\t\t\t\t\t "+imageIn.getSingleBandName()+" input , "+imageIn.getSingleBandName()+" output ) {\n" + "\n" + "\t\tUtilWavelet.checkShape(input,output);\n" + "\n" + "\t\tfinal int offsetA = coefficients.offsetScaling;\n" + "\t\tfinal int offsetB = coefficients.offsetWavelet;\n" + "\t\tfinal "+sumType+"[] alpha = coefficients.scaling;\n" + "\t\tfinal "+sumType+"[] beta = coefficients.wavelet;\n" + "\n" + "\t\tborder.setLength(input.height+input.height%2);\n" + "\n" + "\t\tboolean isLarger = output.height > input.height;\n" + "\n" + "\t\tfor( int x = 0; x < input.width; x++) {\n" + "\t\t\tfor( int y = 0; y < input.height; y += 2 ) {\n" + "\t\t\t\t"+sumType+" scale = 0;\n" + "\t\t\t\t"+sumType+" wavelet = 0;\n" + "\n" + "\t\t\t\tfor( int i = 0; i < alpha.length; i++ ) {\n" + "\t\t\t\t\tint yy = border.getIndex(y+i+offsetA);\n" + "\t\t\t\t\tif( isLarger && yy >= input.height )\n" + "\t\t\t\t\t\tcontinue;\n" + "\t\t\t\t\tscale += input.get(x,yy)*alpha[i];\n" + "\t\t\t\t}\n" + "\t\t\t\tfor( int i = 0; i < beta.length; i++ ) {\n" + "\t\t\t\t\tint yy = border.getIndex(y+i+offsetB);\n" + "\t\t\t\t\tif( isLarger && yy >= input.height )\n" + "\t\t\t\t\t\tcontinue;\n" + "\t\t\t\t\twavelet += input.get(x,yy)*beta[i];\n" + "\t\t\t\t}\n" + "\n" + "\t\t\t\tint outY = y/2;\n" + "\n"); if( imageIn.isInteger() ) { out.print("\t\t\t\tscale = 2*scale/coefficients.denominatorScaling;\n" + "\t\t\t\twavelet = 2*wavelet/coefficients.denominatorWavelet;\n" + "\n"); } out.print("\t\t\t\toutput.set(x , outY,scale);\n" + "\t\t\t\toutput.set(x , output.height/2 + outY , wavelet );\n" + "\t\t\t}\n" + "\t\t}\n" + "\t}\n\n"); } private void printHorizontalInverse() { out.print("\t/**\n" + "\t * Performs a single level inverse wavelet transform along the horizontal axis.\n" + "\t *\n" + "\t * @param inverseCoef Description of wavelet coefficients.\n" + "\t * @param input Transformed image. Not modified.\n" + "\t * @param output Reconstruction of original image. Modified\n" + "\t */\n" + "\tpublic static void horizontalInverse( BorderIndex1D border , WlBorderCoef<WlCoef_"+genName+"> inverseCoef , "+imageIn.getSingleBandName()+" input , "+imageIn.getSingleBandName()+" output ) {\n" + "\n" + "\t\tUtilWavelet.checkShape(output,input);\n" + "\n" + "\t\t"+sumType+" []trends = new "+sumType+"[ output.width ];\n" + "\t\t"+sumType+" []details = new "+sumType+"[ output.width ];\n" + "\n" + "\t\tboolean isLarger = input.width >= output.width;\n" + "\t\tint paddedWidth = output.width + output.width%2;\n" + "\n" + "\t\tfinal int lowerBorder = inverseCoef.getLowerLength()*2;\n" + "\t\tfinal int upperBorder = output.width - inverseCoef.getUpperLength()*2;\n" + "\n" + "\t\tborder.setLength(output.width+output.width%2);\n" + "\n"); if( imageIn.isInteger() ) { out.print("\t\tWlCoef_"+genName+" coefficients = inverseCoef.getInnerCoefficients();\n"); out.print("\t\tfinal int e = coefficients.denominatorScaling*2;\n" + "\t\tfinal int f = coefficients.denominatorWavelet*2;\n" + "\t\tfinal int ef = e*f;\n" + "\t\tfinal int ef2 = ef/2;\n"); } else { out.print("\t\tWlCoef_"+genName+" coefficients;\n"); } out.print("\n"); out.print("\t\tfor( int y = 0; y < output.height; y++ ) {\n" + "\n" + "\t\t\tfor( int i = 0; i < details.length; i++ ) {\n" + "\t\t\t\tdetails[i] = 0;\n" + "\t\t\t\ttrends[i] = 0;\n" + "\t\t\t}\n" + "\n" + "\t\t\tfor( int x = 0; x < output.width; x += 2 ) {\n" + "\t\t\t\t"+sumType+" a = input.get(x/2,y);\n" + "\t\t\t\t"+sumType+" d = input.get(input.width/2+x/2,y);\n" + "\n" + "\t\t\t\tif( x < lowerBorder ) {\n" + "\t\t\t\t\tcoefficients = inverseCoef.getBorderCoefficients(x);\n" + "\t\t\t\t} else if( x >= upperBorder ) {\n" + "\t\t\t\t\tcoefficients = inverseCoef.getBorderCoefficients(x-paddedWidth);\n" + "\t\t\t\t} else {\n" + "\t\t\t\t\tcoefficients = inverseCoef.getInnerCoefficients();\n" + "\t\t\t\t}\n"+ "\n"+ "\t\t\t\tfinal int offsetA = coefficients.offsetScaling;\n" + "\t\t\t\tfinal int offsetB = coefficients.offsetWavelet;\n" + "\t\t\t\tfinal "+sumType+"[] alpha = coefficients.scaling;\n" + "\t\t\t\tfinal "+sumType+"[] beta = coefficients.wavelet;\n" + "\n" + "\t\t\t\t// add the trend\n" + "\t\t\t\tfor( int i = 0; i < alpha.length; i++ ) {\n" + "\t\t\t\t\t// if an odd image don't update the outer edge\n" + "\t\t\t\t\tint xx = border.getIndex(x+offsetA+i);\n" + "\t\t\t\t\tif( isLarger && xx >= output.width )\n" + "\t\t\t\t\t\tcontinue;\n" + "\t\t\t\t\ttrends[xx] += a*alpha[i];\n" + "\t\t\t\t}\n" + "\n" + "\t\t\t\t// add the detail signal\n" + "\t\t\t\tfor( int i = 0; i < beta.length; i++ ) {\n" + "\t\t\t\t\tint xx = border.getIndex(x+offsetB+i);\n" + "\t\t\t\t\tif( isLarger && xx >= output.width )\n" + "\t\t\t\t\t\tcontinue;\n" + "\t\t\t\t\tdetails[xx] += d*beta[i];\n" + "\t\t\t\t}\n" + "\t\t\t}\n" + "\n" + "\t\t\tfor( int x = 0; x < output.width; x++ ) {\n"); if( imageIn.isInteger() ) { out.print("\t\t\t\toutput.set(x,y, UtilWavelet.round(trends[x]*f + details[x]*e ,ef2,ef));\n"); } else { out.print("\t\t\t\toutput.set(x,y, trends[x] + details[x]);\n"); } out.print("\t\t\t}\n" + "\t\t}\n" + "\t}\n\n"); } private void printVerticalInverse() { out.print("\t/**\n" + "\t * Performs a single level inverse wavelet transform along the vertical axis.\n" + "\t *\n" + "\t * @param inverseCoef Description of wavelet coefficients.\n" + "\t * @param input Transformed image. Not modified.\n" + "\t * @param output Reconstruction of original image. Modified\n" + "\t */\n" + "\tpublic static void verticalInverse( BorderIndex1D border , WlBorderCoef<WlCoef_"+genName+"> inverseCoef , "+imageIn.getSingleBandName()+" input , "+imageIn.getSingleBandName()+" output ) {\n" + "\n" + "\t\tUtilWavelet.checkShape(output,input);\n" + "\n" + "\t\t"+sumType+" []trends = new "+sumType+"[ output.height ];\n" + "\t\t"+sumType+" []details = new "+sumType+"[ output.height ];\n" + "\n" + "\t\tboolean isLarger = input.height > output.height;\n" + "\t\tint paddedHeight = output.height + output.height%2;\n" + "\n" + "\t\tfinal int lowerBorder = inverseCoef.getLowerLength()*2;\n" + "\t\tfinal int upperBorder = output.height - inverseCoef.getUpperLength()*2;\n" + "\n" + "\t\tborder.setLength(output.height+output.height%2);\n" + "\n"); if( imageIn.isInteger() ) { out.print("\t\tWlCoef_"+genName+" coefficients = inverseCoef.getInnerCoefficients();\n"); out.print("\t\tfinal int e = coefficients.denominatorScaling*2;\n" + "\t\tfinal int f = coefficients.denominatorWavelet*2;\n" + "\t\tfinal int ef = e*f;\n" + "\t\tfinal int ef2 = ef/2;\n"); } else { out.print("\t\tWlCoef_"+genName+" coefficients;\n"); } out.print("\n"); out.print("\t\tfor( int x = 0; x < output.width; x++) {\n" + "\n" + "\t\t\tfor( int i = 0; i < details.length; i++ ) {\n" + "\t\t\t\tdetails[i] = 0;\n" + "\t\t\t\ttrends[i] = 0;\n" + "\t\t\t}\n" + "\n" + "\t\t\tfor( int y = 0; y < output.height; y += 2 ) {\n" + "\t\t\t\t"+sumType+" a = input.get(x,y/2);\n" + "\t\t\t\t"+sumType+" d = input.get(x,y/2+input.height/2);\n" + "\n" + "\t\t\t\tif( y < lowerBorder ) {\n" + "\t\t\t\t\tcoefficients = inverseCoef.getBorderCoefficients(y);\n" + "\t\t\t\t} else if( y >= upperBorder ) {\n" + "\t\t\t\t\tcoefficients = inverseCoef.getBorderCoefficients(y-paddedHeight);\n" + "\t\t\t\t} else {\n" + "\t\t\t\t\tcoefficients = inverseCoef.getInnerCoefficients();\n" + "\t\t\t\t}\n"+ "\n" + "\t\t\t\tfinal int offsetA = coefficients.offsetScaling;\n" + "\t\t\t\tfinal int offsetB = coefficients.offsetWavelet;\n" + "\t\t\t\tfinal "+sumType+"[] alpha = coefficients.scaling;\n" + "\t\t\t\tfinal "+sumType+"[] beta = coefficients.wavelet;\n" + "\n" + "\t\t\t\t// add the 'average' signal\n" + "\t\t\t\tfor( int i = 0; i < alpha.length; i++ ) {\n" + "\t\t\t\t\t// if an odd image don't update the outer edge\n" + "\t\t\t\t\tint yy = border.getIndex(y+offsetA+i);\n" + "\t\t\t\t\tif( isLarger && yy >= output.height )\n" + "\t\t\t\t\t\tcontinue;\n" + "\t\t\t\t\ttrends[yy] += a*alpha[i];\n" + "\t\t\t\t}\n" + "\n" + "\t\t\t\t// add the detail signal\n" + "\t\t\t\tfor( int i = 0; i < beta.length; i++ ) {\n" + "\t\t\t\t\tint yy = border.getIndex(y+offsetB+i);\n" + "\t\t\t\t\tif( isLarger && yy >= output.height )\n" + "\t\t\t\t\t\tcontinue;\n" + "\t\t\t\t\tdetails[yy] += d*beta[i];\n" + "\t\t\t\t}\n" + "\t\t\t}\n" + "\n" + "\t\t\tfor( int y = 0; y < output.height; y++ ) {\n"); if( imageIn.isInteger() ) { out.print("\t\t\t\toutput.set(x,y, UtilWavelet.round(trends[y]*f + details[y]*e,ef2,ef));\n"); } else { out.print("\t\t\t\toutput.set(x,y, trends[y] + details[y]);\n"); } out.print("\t\t\t}\n" + "\t\t}\n" + "\t}\n\n"); } public static void main( String args[] ) throws FileNotFoundException { GenerateImplWaveletTransformNaive app = new GenerateImplWaveletTransformNaive(); app.generate(); } }