/* * Copyright (c) 2011-2016, Peter Abeles. All Rights Reserved. * * This file is part of BoofCV (http://boofcv.org). * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package boofcv.examples.imageprocessing; import boofcv.abst.filter.derivative.AnyImageDerivative; import boofcv.alg.filter.derivative.DerivativeType; import boofcv.alg.filter.derivative.GImageDerivativeOps; import boofcv.core.image.border.BorderType; import boofcv.gui.ListDisplayPanel; import boofcv.gui.image.ShowImages; import boofcv.gui.image.VisualizeImageData; import boofcv.io.UtilIO; import boofcv.io.image.ConvertBufferedImage; import boofcv.io.image.UtilImageIO; import boofcv.struct.image.GrayF32; import java.awt.image.BufferedImage; /** * Example showing how to compute different image derivatives using built in functions. * * @author Peter Abeles */ public class ExampleImageDerivative { public static void main(String[] args) { BufferedImage input = UtilImageIO.loadImage(UtilIO.pathExample("simple_objects.jpg")); // We will use floating point images here, but GrayU8 with GrayS16 for derivatives also works GrayF32 grey = new GrayF32(input.getWidth(),input.getHeight()); ConvertBufferedImage.convertFrom(input, grey); // First order derivative, also known as the gradient GrayF32 derivX = new GrayF32(grey.width,grey.height); GrayF32 derivY = new GrayF32(grey.width,grey.height); GImageDerivativeOps.gradient(DerivativeType.SOBEL, grey, derivX, derivY, BorderType.EXTENDED); // Second order derivative, also known as the Hessian GrayF32 derivXX = new GrayF32(grey.width,grey.height); GrayF32 derivXY = new GrayF32(grey.width,grey.height); GrayF32 derivYY = new GrayF32(grey.width,grey.height); GImageDerivativeOps.hessian(DerivativeType.SOBEL, derivX, derivY, derivXX, derivXY, derivYY, BorderType.EXTENDED); // There's also a built in function for computing arbitrary derivatives AnyImageDerivative<GrayF32,GrayF32> derivative = GImageDerivativeOps.createAnyDerivatives(DerivativeType.SOBEL, GrayF32.class, GrayF32.class); // the boolean sequence indicates if its an X or Y derivative derivative.setInput(grey); GrayF32 derivXYX = derivative.getDerivative(true, false, true); // Visualize the results ListDisplayPanel gui = new ListDisplayPanel(); gui.addImage(ConvertBufferedImage.convertTo(grey,null),"Input Grey"); gui.addImage(VisualizeImageData.colorizeSign(derivX, null, -1),"Sobel X"); gui.addImage(VisualizeImageData.colorizeSign(derivY, null, -1),"Sobel Y"); // Use colors to show X and Y derivatives in one image. Looks pretty. gui.addImage(VisualizeImageData.colorizeGradient(derivX, derivY, -1),"Sobel X and Y"); gui.addImage(VisualizeImageData.colorizeSign(derivXX, null,-1),"Sobel XX"); gui.addImage(VisualizeImageData.colorizeSign(derivXY, null,-1),"Sobel XY"); gui.addImage(VisualizeImageData.colorizeSign(derivYY, null,-1),"Sobel YY"); gui.addImage(VisualizeImageData.colorizeSign(derivXYX, null,-1),"Sobel XYX"); ShowImages.showWindow(gui,"Image Derivatives",true); } }