package railo.commons.collection; import java.util.ConcurrentModificationException; import java.util.Iterator; import java.util.LinkedHashMap; import java.util.Map; import java.util.NoSuchElementException; import railo.runtime.exp.PageException; public class LinkedHashMapPro<K,V> extends HashMapPro<K,V> implements MapPro<K,V> { private static final long serialVersionUID = 3801124242820219131L; /** * The head of the doubly linked list. */ private transient Entry<K,V> header; /** * The iteration ordering method for this linked hash map: <tt>true</tt> * for access-order, <tt>false</tt> for insertion-order. * * @serial */ private final boolean accessOrder; /** * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance * with the specified initial capacity and load factor. * * @param initialCapacity the initial capacity * @param loadFactor the load factor * @throws IllegalArgumentException if the initial capacity is negative * or the load factor is nonpositive */ public LinkedHashMapPro(int initialCapacity, float loadFactor) { super(initialCapacity, loadFactor); accessOrder = false; } /** * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance * with the specified initial capacity and a default load factor (0.75). * * @param initialCapacity the initial capacity * @throws IllegalArgumentException if the initial capacity is negative */ public LinkedHashMapPro(int initialCapacity) { super(initialCapacity); accessOrder = false; } /** * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance * with the default initial capacity (16) and load factor (0.75). */ public LinkedHashMapPro() { super(); accessOrder = false; } // TODO better implementation @Override public void writeExternal(java.io.ObjectOutput out) throws java.io.IOException { out.writeObject(new LinkedHashMap(this)); } @Override public void readExternal(java.io.ObjectInput in) throws java.io.IOException, ClassNotFoundException { this.putAll((Map)in.readObject()); } /** * Constructs an insertion-ordered <tt>LinkedHashMap</tt> instance with * the same mappings as the specified map. The <tt>LinkedHashMap</tt> * instance is created with a default load factor (0.75) and an initial * capacity sufficient to hold the mappings in the specified map. * * @param m the map whose mappings are to be placed in this map * @throws NullPointerException if the specified map is null */ public LinkedHashMapPro(Map<? extends K, ? extends V> m) { super(m); accessOrder = false; } /** * Constructs an empty <tt>LinkedHashMap</tt> instance with the * specified initial capacity, load factor and ordering mode. * * @param initialCapacity the initial capacity * @param loadFactor the load factor * @param accessOrder the ordering mode - <tt>true</tt> for * access-order, <tt>false</tt> for insertion-order * @throws IllegalArgumentException if the initial capacity is negative * or the load factor is nonpositive */ public LinkedHashMapPro(int initialCapacity, float loadFactor, boolean accessOrder) { super(initialCapacity, loadFactor); this.accessOrder = accessOrder; } /** * Called by superclass constructors and pseudoconstructors (clone, * readObject) before any entries are inserted into the map. Initializes * the chain. */ @Override void init() { header = new Entry<K,V>(-1, null, null, null); header.before = header.after = header; } /** * Transfers all entries to new table array. This method is called * by superclass resize. It is overridden for performance, as it is * faster to iterate using our linked list. */ void transfer(HashMapPro.Entry[] newTable) { int newCapacity = newTable.length; for (Entry<K,V> e = header.after; e != header; e = e.after) { //if (rehash) // e.hash = (e.key == null) ? 0 : hash(e.key); int index = indexFor(e.hash, newCapacity); e.next = newTable[index]; newTable[index] = e; } } /** * Returns <tt>true</tt> if this map maps one or more keys to the * specified value. * * @param value value whose presence in this map is to be tested * @return <tt>true</tt> if this map maps one or more keys to the * specified value */ public boolean containsValue(Object value) { // Overridden to take advantage of faster iterator if (value==null) { for (Entry e = header.after; e != header; e = e.after) if (e.value==null) return true; } else { for (Entry e = header.after; e != header; e = e.after) if (value.equals(e.value)) return true; } return false; } /** * Returns the value to which the specified key is mapped, * or {@code null} if this map contains no mapping for the key. * * <p>More formally, if this map contains a mapping from a key * {@code k} to a value {@code v} such that {@code (key==null ? k==null : * key.equals(k))}, then this method returns {@code v}; otherwise * it returns {@code null}. (There can be at most one such mapping.) * * <p>A return value of {@code null} does not <i>necessarily</i> * indicate that the map contains no mapping for the key; it's also * possible that the map explicitly maps the key to {@code null}. * The {@link #containsKey containsKey} operation may be used to * distinguish these two cases. */ public V get(Object key) { HashMapPro.Entry<K,V> e = getEntry(key); if (e == null) return null; e.recordAccess(this); return e.value; } public V g(K key) throws PageException { int hash = (key == null) ? 0 : hash(key); for (HashMapPro.Entry<K,V> e = table[indexFor(hash, table.length)]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { e.recordAccess(this); return e.getValue(); } } throw invalidKey(this, key,false); } public V g(K key, V defaultValue) { int hash = (key == null) ? 0 : hash(key); for (HashMapPro.Entry<K,V> e = table[indexFor(hash, table.length)]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { e.recordAccess(this); return e.getValue(); } } return defaultValue; } /** * Removes all of the mappings from this map. * The map will be empty after this call returns. */ public void clear() { super.clear(); header.before = header.after = header; } /** * LinkedHashMap entry. */ private static class Entry<K,V> extends HashMapPro.Entry<K,V> { // These fields comprise the doubly linked list used for iteration. Entry<K,V> before, after; Entry(int hash, K key, V value, HashMapPro.Entry<K,V> next) { super(hash, key, value, next); } /** * Removes this entry from the linked list. */ private void remove() { before.after = after; after.before = before; } /** * Inserts this entry before the specified existing entry in the list. */ private void addBefore(Entry<K,V> existingEntry) { after = existingEntry; before = existingEntry.before; before.after = this; after.before = this; } /** * This method is invoked by the superclass whenever the value * of a pre-existing entry is read by Map.get or modified by Map.set. * If the enclosing Map is access-ordered, it moves the entry * to the end of the list; otherwise, it does nothing. */ void recordAccess(HashMapPro<K,V> m) { LinkedHashMapPro<K,V> lm = (LinkedHashMapPro<K,V>)m; if (lm.accessOrder) { lm.modCount++; remove(); addBefore(lm.header); } } void recordRemoval(HashMapPro<K,V> m) { remove(); } } private abstract class LinkedHashIterator<T> implements Iterator<T> { Entry<K,V> nextEntry = header.after; Entry<K,V> lastReturned = null; /** * The modCount value that the iterator believes that the backing * List should have. If this expectation is violated, the iterator * has detected concurrent modification. */ int expectedModCount = modCount; public boolean hasNext() { return nextEntry != header; } public void remove() { if (lastReturned == null) throw new IllegalStateException(); if (modCount != expectedModCount) throw new ConcurrentModificationException(); LinkedHashMapPro.this.remove(lastReturned.key); lastReturned = null; expectedModCount = modCount; } Entry<K,V> nextEntry() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); if (nextEntry == header) throw new NoSuchElementException(); Entry<K,V> e = lastReturned = nextEntry; nextEntry = e.after; return e; } } private class KeyIterator extends LinkedHashIterator<K> { public K next() { return nextEntry().getKey(); } } private class ValueIterator extends LinkedHashIterator<V> { public V next() { return nextEntry().value; } } private class EntryIterator extends LinkedHashIterator<Map.Entry<K,V>> { public Map.Entry<K,V> next() { return nextEntry(); } } // These Overrides alter the behavior of superclass view iterator() methods Iterator<K> newKeyIterator() { return new KeyIterator(); } Iterator<V> newValueIterator() { return new ValueIterator(); } Iterator<Map.Entry<K,V>> newEntryIterator() { return new EntryIterator(); } /** * This override alters behavior of superclass put method. It causes newly * allocated entry to get inserted at the end of the linked list and * removes the eldest entry if appropriate. */ void addEntry(int hash, K key, V value, int bucketIndex) { super.addEntry(hash, key, value, bucketIndex); // Remove eldest entry if instructed Entry<K,V> eldest = header.after; if (removeEldestEntry(eldest)) { removeEntryForKey(eldest.key); } } /** * This override differs from addEntry in that it doesn't resize the * table or remove the eldest entry. */ void createEntry(int hash, K key, V value, int bucketIndex) { HashMapPro.Entry<K,V> old = table[bucketIndex]; Entry<K,V> e = new Entry<K,V>(hash, key, value, old); table[bucketIndex] = e; e.addBefore(header); size++; } /** * Returns <tt>true</tt> if this map should remove its eldest entry. * This method is invoked by <tt>put</tt> and <tt>putAll</tt> after * inserting a new entry into the map. It provides the implementor * with the opportunity to remove the eldest entry each time a new one * is added. This is useful if the map represents a cache: it allows * the map to reduce memory consumption by deleting stale entries. * * <p>Sample use: this override will allow the map to grow up to 100 * entries and then delete the eldest entry each time a new entry is * added, maintaining a steady state of 100 entries. * <pre> * private static final int MAX_ENTRIES = 100; * * protected boolean removeEldestEntry(Map.Entry eldest) { * return size() > MAX_ENTRIES; * } * </pre> * * <p>This method typically does not modify the map in any way, * instead allowing the map to modify itself as directed by its * return value. It <i>is</i> permitted for this method to modify * the map directly, but if it does so, it <i>must</i> return * <tt>false</tt> (indicating that the map should not attempt any * further modification). The effects of returning <tt>true</tt> * after modifying the map from within this method are unspecified. * * <p>This implementation merely returns <tt>false</tt> (so that this * map acts like a normal map - the eldest element is never removed). * * @param eldest The least recently inserted entry in the map, or if * this is an access-ordered map, the least recently accessed * entry. This is the entry that will be removed it this * method returns <tt>true</tt>. If the map was empty prior * to the <tt>put</tt> or <tt>putAll</tt> invocation resulting * in this invocation, this will be the entry that was just * inserted; in other words, if the map contains a single * entry, the eldest entry is also the newest. * @return <tt>true</tt> if the eldest entry should be removed * from the map; <tt>false</tt> if it should be retained. */ protected boolean removeEldestEntry(Map.Entry<K,V> eldest) { return false; } }