package java.util; /* * %W% %E% * * Copyright (c) 2006, Oracle and/or its affiliates. All rights reserved. * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. */ //import java.io.*; import javax.safetycritical.ManagedMemory; //import scjlibs.lang.Cloneable; /** * Hash table based implementation of the <tt>Map</tt> interface. This * implementation provides all of the optional map operations, and permits * <tt>null</tt> values and the <tt>null</tt> key. (The <tt>HashMap</tt> * class is roughly equivalent to <tt>Hashtable</tt>, except that it is * unsynchronized and permits nulls.) This class makes no guarantees as to * the order of the map; in particular, it does not guarantee that the order * will remain constant over time. * * <p>This implementation provides constant-time performance for the basic * operations (<tt>get</tt> and <tt>put</tt>), assuming the hash function * disperses the elements properly among the buckets. Iteration over * collection views requires time proportional to the "capacity" of the * <tt>HashMap</tt> instance (the number of buckets) plus its size (the number * of key-value mappings). Thus, it's very important not to set the initial * capacity too high (or the load factor too low) if iteration performance is * important. * * <p>An instance of <tt>HashMap</tt> has two parameters that affect its * performance: <i>initial capacity</i> and <i>load factor</i>. The * <i>capacity</i> is the number of buckets in the hash table, and the initial * capacity is simply the capacity at the time the hash table is created. The * <i>load factor</i> is a measure of how full the hash table is allowed to * get before its capacity is automatically increased. When the number of * entries in the hash table exceeds the product of the load factor and the * current capacity, the hash table is <i>rehashed</i> (that is, internal data * structures are rebuilt) so that the hash table has approximately twice the * number of buckets. * * <p>As a general rule, the default load factor (.75) offers a good tradeoff * between time and space costs. Higher values decrease the space overhead * but increase the lookup cost (reflected in most of the operations of the * <tt>HashMap</tt> class, including <tt>get</tt> and <tt>put</tt>). The * expected number of entries in the map and its load factor should be taken * into account when setting its initial capacity, so as to minimize the * number of rehash operations. If the initial capacity is greater * than the maximum number of entries divided by the load factor, no * rehash operations will ever occur. * * <p>If many mappings are to be stored in a <tt>HashMap</tt> instance, * creating it with a sufficiently large capacity will allow the mappings to * be stored more efficiently than letting it perform automatic rehashing as * needed to grow the table. * * <p><strong>Note that this implementation is not synchronized.</strong> * If multiple threads access a hash map concurrently, and at least one of * the threads modifies the map structurally, it <i>must</i> be * synchronized externally. (A structural modification is any operation * that adds or deletes one or more mappings; merely changing the value * associated with a key that an instance already contains is not a * structural modification.) This is typically accomplished by * synchronizing on some object that naturally encapsulates the map. * * If no such object exists, the map should be "wrapped" using the * {@link Collections#synchronizedMap Collections.synchronizedMap} * method. This is best done at creation time, to prevent accidental * unsynchronized access to the map:<pre> * Map m = Collections.synchronizedMap(new HashMap(...));</pre> * * <p>The iterators returned by all of this class's "collection view methods" * are <i>fail-fast</i>: if the map is structurally modified at any time after * the iterator is created, in any way except through the iterator's own * <tt>remove</tt> method, the iterator will throw a * {@link ConcurrentModificationException}. Thus, in the face of concurrent * modification, the iterator fails quickly and cleanly, rather than risking * arbitrary, non-deterministic behavior at an undetermined time in the * future. * * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed * as it is, generally speaking, impossible to make any hard guarantees in the * presence of unsynchronized concurrent modification. Fail-fast iterators * throw <tt>ConcurrentModificationException</tt> on a best-effort basis. * Therefore, it would be wrong to write a program that depended on this * exception for its correctness: <i>the fail-fast behavior of iterators * should be used only to detect bugs.</i> * * <p>This class is a member of the * <a href="{@docRoot}/../technotes/guides/collections/index.html"> * Java Collections Framework</a>. * * @param <K> the type of keys maintained by this map * @param <V> the type of mapped values * * @author Doug Lea * @author Josh Bloch * @author Arthur van Hoff * @author Neal Gafter * @version %I%, %G% * @see Object#hashCode() * @see Collection * @see Map * @see TreeMap * @see Hashtable * @since 1.2 */ public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V> //, Cloneable //, Serializable { /** * The default initial capacity - MUST be a power of two. */ static final int DEFAULT_INITIAL_CAPACITY = 16; /** * The maximum capacity, used if a higher value is implicitly specified * by either of the constructors with arguments. * MUST be a power of two <= 1<<30. */ static final int MAXIMUM_CAPACITY = 1 << 30; /** * The load factor used when none specified in constructor. */ static final float DEFAULT_LOAD_FACTOR = 0.75f; /** * The table, resized as necessary. Length MUST Always be a power of two. */ public transient Entry<K,V>[] table; /** * The number of key-value mappings contained in this map. */ transient int size; /** * The next size value at which to resize (capacity * load factor). * @serial */ int threshold; /** * The load factor for the hash table. * * @serial */ final float loadFactor; /** * The number of times this HashMap has been structurally modified * Structural modifications are those that change the number of mappings in * the HashMap or otherwise modify its internal structure (e.g., * rehash). This field is used to make iterators on Collection-views of * the HashMap fail-fast. (See ConcurrentModificationException). */ transient volatile int modCount; /** * Constructs an empty <tt>HashMap</tt> with the specified initial * capacity and load factor. * * @param initialCapacity the initial capacity * @param loadFactor the load factor * @throws IllegalArgumentException if the initial capacity is negative * or the load factor is nonpositive */ public HashMap(int initialCapacity, float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); // Find a power of 2 >= initialCapacity int capacity = 1; while (capacity < initialCapacity) capacity <<= 1; this.loadFactor = loadFactor; threshold = (int)(capacity * loadFactor); table = new Entry[capacity]; init(); } /** * Constructs an empty <tt>HashMap</tt> with the specified initial * capacity and the default load factor (0.75). * * @param initialCapacity the initial capacity. * @throws IllegalArgumentException if the initial capacity is negative. */ public HashMap(int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR); } /** * Constructs an empty <tt>HashMap</tt> with the default initial capacity * (16) and the default load factor (0.75). */ public HashMap() { this.loadFactor = DEFAULT_LOAD_FACTOR; threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR); table = new Entry[DEFAULT_INITIAL_CAPACITY]; init(); } //TODO: Review this constructor /** * Constructs a new <tt>HashMap</tt> with the same mappings as the * specified <tt>Map</tt>. The <tt>HashMap</tt> is created with * default load factor (0.75) and an initial capacity sufficient to * hold the mappings in the specified <tt>Map</tt>. * * @param m the map whose mappings are to be placed in this map * @throws NullPointerException if the specified map is null */ public HashMap(Map<? extends K, ? extends V> m) { this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1, DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR); putAllForCreate(m); } // internal utilities /** * Initialization hook for subclasses. This method is called * in all constructors and pseudo-constructors (clone, readObject) * after HashMap has been initialized but before any entries have * been inserted. (In the absence of this method, readObject would * require explicit knowledge of subclasses.) */ Entry<K,V>[] freeEntries; void init() { // Initialize Entry pool freeEntries = new Entry[table.length]; for(int i=0; i<table.length; i++){ freeEntries[i] = new Entry<K, V>(); } // Initialize the views of the HashMap entrySet = new EntrySet(); keySet = new KeySet(); values = new Values(); } /** * Applies a supplemental hash function to a given hashCode, which * defends against poor quality hash functions. This is critical * because HashMap uses power-of-two length hash tables, that * otherwise encounter collisions for hashCodes that do not differ * in lower bits. Note: Null keys always map to hash 0, thus index 0. */ @MemSafe(risk = {MemoryRisk.NONE}) static int hash(int h) { // This function ensures that hashCodes that differ only by // constant multiples at each bit position have a bounded // number of collisions (approximately 8 at default load factor). h ^= (h >>> 20) ^ (h >>> 12); return h ^ (h >>> 7) ^ (h >>> 4); } /** * Returns index for hash code h. */ @MemSafe(risk = {MemoryRisk.NONE}) static int indexFor(int h, int length) { return h & (length-1); } /** * Returns the number of key-value mappings in this map. * * @return the number of key-value mappings in this map */ @MemSafe(risk = {MemoryRisk.NONE}) public int size() { return size; } /** * Returns <tt>true</tt> if this map contains no key-value mappings. * * @return <tt>true</tt> if this map contains no key-value mappings */ @MemSafe(risk = {MemoryRisk.NONE}) public boolean isEmpty() { return size == 0; } /** * Returns the value to which the specified key is mapped, * or {@code null} if this map contains no mapping for the key. * * <p>More formally, if this map contains a mapping from a key * {@code k} to a value {@code v} such that {@code (key==null ? k==null : * key.equals(k))}, then this method returns {@code v}; otherwise * it returns {@code null}. (There can be at most one such mapping.) * * <p>A return value of {@code null} does not <i>necessarily</i> * indicate that the map contains no mapping for the key; it's also * possible that the map explicitly maps the key to {@code null}. * The {@link #containsKey containsKey} operation may be used to * distinguish these two cases. * * @see #put(Object, Object) */ @MemSafe(risk ={MemoryRisk.NONE}) public V get(Object key) { if (key == null) return getForNullKey(); int hash = hash(key.hashCode()); // System.out.println("get: "+indexFor(hash, table.length)); // // if(table[indexFor(hash, table.length)] == null){ // System.out.println("null"); // }else{ // System.out.println("Not null"); // } for (Entry<K, V> e = table[indexFor(hash, table.length)]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || key.equals(k))) return e.value; } return null; } /** * Offloaded version of get() to look up null keys. Null keys map * to index 0. This null case is split out into separate methods * for the sake of performance in the two most commonly used * operations (get and put), but incorporated with conditionals in * others. */ @MemSafe(risk ={MemoryRisk.NONE}) private V getForNullKey() { // System.out.println("uh?"); for (Entry<K,V> e = table[0]; e != null; e = e.next) { if (e.key == null) return e.value; } return null; } /** * Returns <tt>true</tt> if this map contains a mapping for the * specified key. * * @param key The key whose presence in this map is to be tested * @return <tt>true</tt> if this map contains a mapping for the specified * key. */ @MemSafe(risk ={MemoryRisk.NONE}) public boolean containsKey(Object key) { return getEntry(key) != null; } /** * Returns the entry associated with the specified key in the * HashMap. Returns null if the HashMap contains no mapping * for the key. */ @MemSafe(risk ={MemoryRisk.NONE}) final Entry<K, V> getEntry(Object key) { int hash = (key == null) ? 0 : hash(key.hashCode()); for (Entry<K, V> e = table[indexFor(hash, table.length)]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } return null; } /** * Associates the specified value with the specified key in this map. * If the map previously contained a mapping for the key, the old * value is replaced. * * @param key key with which the specified value is to be associated * @param value value to be associated with the specified key * @return the previous value associated with <tt>key</tt>, or * <tt>null</tt> if there was no mapping for <tt>key</tt>. * (A <tt>null</tt> return can also indicate that the map * previously associated <tt>null</tt> with <tt>key</tt>.) */ @MemSafe(risk = {MemoryRisk.MIXED_CONTEXT, MemoryRisk.UNREFERENCED_OBJ}) public V put(K key, V value) { if (key == null) return putForNullKey(value); int hash = hash(key.hashCode()); int i = indexFor(hash, table.length); // System.out.println("put: "+indexFor(hash, table.length)); for (Entry<K,V> e = table[i]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || key.equals(k))) { V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } } modCount++; addEntry(hash, key, value, i); return null; } /** * Offloaded version of put for null keys */ @MemSafe(risk = {MemoryRisk.UNREFERENCED_OBJ}) private V putForNullKey(V value) { for (Entry<K,V> e = table[0]; e != null; e = e.next) { if (e.key == null) { V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } } modCount++; addEntry(0, null, value, 0); return null; } /** * This method is used instead of put by constructors and * pseudoconstructors (clone, readObject). It does not resize the table, * check for comodification, etc. It calls createEntry rather than * addEntry. */ @MemSafe(risk = {MemoryRisk.MIXED_CONTEXT, MemoryRisk.UNREFERENCED_OBJ}) private void putForCreate(K key, V value) { int hash = (key == null) ? 0 : hash(key.hashCode()); int i = indexFor(hash, table.length); /** * Look for preexisting entry for key. This will never happen for * clone or deserialize. It will only happen for construction if the * input Map is a sorted map whose ordering is inconsistent w/ equals. */ for (Entry<K,V> e = table[i]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { e.value = value; return; } } //XXX // createEntry(hash, key, value, i); } @MemSafe(risk = {MemoryRisk.MIXED_CONTEXT, MemoryRisk.UNREFERENCED_OBJ}) private void putAllForCreate(Map<? extends K, ? extends V> m) { for (Iterator<? extends Map.Entry<? extends K, ? extends V>> i = m.entrySet().iterator(); i.hasNext(); ) { Map.Entry<? extends K, ? extends V> e = i.next(); putForCreate(e.getKey(), e.getValue()); } } // /** // * Rehashes the contents of this map into a new array with a // * larger capacity. This method is called automatically when the // * number of keys in this map reaches its threshold. // * // * If current capacity is MAXIMUM_CAPACITY, this method does not // * resize the map, but sets threshold to Integer.MAX_VALUE. // * This has the effect of preventing future calls. // * // * @param newCapacity the new capacity, MUST be a power of two; // * must be greater than current capacity unless current // * capacity is MAXIMUM_CAPACITY (in which case value // * is irrelevant). // */ // @MemSafe(risk = {MemoryRisk.UNREFERENCED_OBJ, MemoryRisk.MIXED_CONTEXT}) void resize(int newCapacity) { // Entry[] oldTable = table; // int oldCapacity = oldTable.length; // if (oldCapacity == MAXIMUM_CAPACITY) { // threshold = Integer.MAX_VALUE; // return; // } // // Entry[] newTable = new Entry[newCapacity]; // transfer(newTable); // table = newTable; // threshold = (int)(newCapacity * loadFactor); } // // /** // * Transfers all entries from current table to newTable. // */ // @MemSafe(risk = {MemoryRisk.MIXED_CONTEXT}) // void transfer(Entry[] newTable) { // Entry[] src = table; // int newCapacity = newTable.length; // for (int j = 0; j < src.length; j++) { // Entry<K,V> e = src[j]; // if (e != null) { // src[j] = null; // do { // Entry<K,V> next = e.next; // int i = indexFor(e.hash, newCapacity); // e.next = newTable[i]; // newTable[i] = e; // e = next; // } while (e != null); // } // } // } // /** // * Copies all of the mappings from the specified map to this map. // * These mappings will replace any mappings that this map had for // * any of the keys currently in the specified map. // * // * @param m mappings to be stored in this map // * @throws NullPointerException if the specified map is null // */ // @MemSafe(risk = {MemoryRisk.UNREFERENCED_OBJ, MemoryRisk.MIXED_CONTEXT, MemoryRisk.TEMP_OBJECTS}) // public void putAll(Map<? extends K, ? extends V> m) { // int numKeysToBeAdded = m.size(); // if (numKeysToBeAdded == 0) // return; // // /* // * Expand the map if the map if the number of mappings to be added // * is greater than or equal to threshold. This is conservative; the // * obvious condition is (m.size() + size) >= threshold, but this // * condition could result in a map with twice the appropriate capacity, // * if the keys to be added overlap with the keys already in this map. // * By using the conservative calculation, we subject ourself // * to at most one extra resize. // */ // if (numKeysToBeAdded > threshold) { // int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1); // if (targetCapacity > MAXIMUM_CAPACITY) // targetCapacity = MAXIMUM_CAPACITY; // int newCapacity = table.length; // while (newCapacity < targetCapacity) // newCapacity <<= 1; //// if (newCapacity > table.length) // //XXX //// resize(newCapacity); // } // // for (Iterator<? extends Map.Entry<? extends K, ? extends V>> i = m.entrySet().iterator(); i.hasNext(); ) { // Map.Entry<? extends K, ? extends V> e = i.next(); // put(e.getKey(), e.getValue()); // } // } /** * Removes the mapping for the specified key from this map if present. * * @param key key whose mapping is to be removed from the map * @return the previous value associated with <tt>key</tt>, or * <tt>null</tt> if there was no mapping for <tt>key</tt>. * (A <tt>null</tt> return can also indicate that the map * previously associated <tt>null</tt> with <tt>key</tt>.) */ @MemSafe(risk = {MemoryRisk.UNREFERENCED_OBJ}) public V remove(Object key) { Entry<K, V> e = removeEntryForKey(key); V tempValue; if (e == null) { return null; } else { tempValue = e.value; /* Return the entry to the entry pool */ e.isFree = true; e.hash = 0; /* * Key and Value objects should also be returned * to their respective pools */ e.key = null; e.value = null; e.next = null; return tempValue; } // return (e == null ? null : e.value); } /** * Removes and returns the entry associated with the specified key * in the HashMap. Returns null if the HashMap contains no mapping * for this key. */ @MemSafe(risk = {MemoryRisk.UNREFERENCED_OBJ}) final Entry<K, V> removeEntryForKey(Object key) { int hash = (key == null) ? 0 : hash(key.hashCode()); int i = indexFor(hash, table.length); Entry<K, V> prev = table[i]; Entry<K, V> e = prev; while (e != null) { Entry<K, V> next = e.next; Object k; if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { modCount++; size--; if (prev == e) table[i] = next; else prev.next = next; e.recordRemoval(this); return e; } prev = e; e = next; } return e; } /** * Special version of remove for EntrySet. */ final Entry<K,V> removeMapping(Object o) { if (!(o instanceof Map.Entry)) return null; Map.Entry<K,V> entry = (Map.Entry<K,V>) o; Object key = entry.getKey(); int hash = (key == null) ? 0 : hash(key.hashCode()); int i = indexFor(hash, table.length); Entry<K,V> prev = table[i]; Entry<K,V> e = prev; while (e != null) { Entry<K,V> next = e.next; if (e.hash == hash && e.equals(entry)) { modCount++; size--; if (prev == e) table[i] = next; else prev.next = next; e.recordRemoval(this); return e; } prev = e; e = next; } return e; } /** * Removes all of the mappings from this map. * The map will be empty after this call returns. */ @MemSafe(risk = {MemoryRisk.OBJ_REF_TO_NULL}) public void clear() { modCount++; // Entry[] tab = table; // for (int i = 0; i < tab.length; i++){ for (int i = 0; i < table.length; i++){ // tab[i] = null; // Entry<K,V> e = tab[i]; Entry<K,V> e = table[i]; while(e != null){ Entry<K,V> next = e.next; e.clear(); e = next; } } size = 0; } /** * Returns <tt>true</tt> if this map maps one or more keys to the * specified value. * * @param value value whose presence in this map is to be tested * @return <tt>true</tt> if this map maps one or more keys to the * specified value */ @MemSafe(risk = {MemoryRisk.NONE}) public boolean containsValue(Object value) { if (value == null) return containsNullValue(); Entry[] tab = table; for (int i = 0; i < tab.length; i++) for (Entry e = tab[i]; e != null; e = e.next) if (value.equals(e.value)) return true; return false; } /** * Special-case code for containsValue with null argument */ @MemSafe(risk = {MemoryRisk.NONE}) private boolean containsNullValue() { Entry[] tab = table; for (int i = 0; i < tab.length ; i++) for (Entry e = tab[i] ; e != null ; e = e.next) if (e.value == null) return true; return false; } // /** // * Returns a shallow copy of this <tt>HashMap</tt> instance: the keys and // * values themselves are not cloned. // * // * @return a shallow copy of this map // */ // public Object clone() { // HashMap<K, V> result = null; // try { // result = (HashMap<K, V>) super.clone(); // } catch (CloneNotSupportedException e) { // // assert false; // } // result.table = new Entry[table.length]; // result.entrySet = null; // result.modCount = 0; // result.size = 0; // result.init(); // result.putAllForCreate(this); // // return result; // } static class Entry<K,V > implements Map.Entry<K,V> { // final K key; K key; V value; Entry<K,V> next; // final int hash; int hash; public boolean isFree = true; /** * Creates new entry. */ Entry(int h, K k, V v, Entry<K,V> n) { value = v; next = n; key = k; hash = h; isFree = true; } Entry(){ value = null; next = null; key = null; hash = 0; isFree = true; } public final K getKey() { return key; } public final V getValue() { return value; } @MemSafe(risk = {MemoryRisk.UNREFERENCED_OBJ}) public final V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } public final boolean equals(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry)o; Object k1 = getKey(); Object k2 = e.getKey(); if (k1 == k2 || (k1 != null && k1.equals(k2))) { Object v1 = getValue(); Object v2 = e.getValue(); if (v1 == v2 || (v1 != null && v1.equals(v2))) return true; } return false; } public final int hashCode() { return (key==null ? 0 : key.hashCode()) ^ (value==null ? 0 : value.hashCode()); } public final String toString() { return getKey() + "=" + getValue(); } /** * This method is invoked whenever the value in an entry is * overwritten by an invocation of put(k,v) for a key k that's already * in the HashMap. */ void recordAccess(HashMap<K,V> m) { } /** * This method is invoked whenever the entry is * removed from the table. */ void recordRemoval(HashMap<K,V> m) { } void clear(){ value = null; next = null; key = null; hash = 0; isFree = true; } } /** * Adds a new entry with the specified key, value and hash code to * the specified bucket. It is the responsibility of this * method to resize the table if appropriate. * * Subclass overrides this to alter the behavior of put method. */ @MemSafe(risk = { MemoryRisk.MIXED_CONTEXT, MemoryRisk.RESIZE }) void addEntry(int hash, K key, V value, int bucketIndex) { Entry<K, V> e = table[bucketIndex]; // table[bucketIndex] = new Entry<K,V>(hash, key, value, e); if (size < freeEntries.length) { for (int i = 0; i < freeEntries.length; i++) { if (freeEntries[i].isFree) { table[bucketIndex] = freeEntries[i]; // System.out.println("Found free entry"); break; } } table[bucketIndex].hash = hash; table[bucketIndex].key = key; table[bucketIndex].value = value; table[bucketIndex].isFree = false; table[bucketIndex].next = e; /* Increase size only if we find a free entry */ size++; } else { System.out.println("Can't add entry"); } // table[bucketIndex] = getFreeEntry(hash, key, value, e); // if(table[bucketIndex]==null){ // System.out.println("hu?"); // } // Resize operation not allowed for scope safety. // if (size++ >= threshold) // resize(2 * table.length); } // private Entry<K, V> getFreeEntry(int hash, K key, V value, Entry<K, V> next) { // // Entry<K, V> e = null; // // if (size < freeEntries.length) { // for (int i = 0; i < freeEntries.length; i++) { // if (freeEntries[i].isFree) { // e = freeEntries[i]; // System.out.println("Not null"); // break; // } // } // e.hash = hash; // e.key = key; // e.value = value; // e.isFree = false; // e.next = next; // // /* Increase size only if we find a free entry */ // size++; // return e; // } else { // System.out.println("Can't add entry"); // return null; // } // //// return e; // } // /** // * Like addEntry except that this version is used when creating entries // * as part of Map construction or "pseudo-construction" (cloning, // * deserialization). This version needn't worry about resizing the table. // * // * Subclass overrides this to alter the behavior of HashMap(Map), // * clone, and readObject. // */ // @MemSafe(risk = {MemoryRisk.MIXED_CONTEXT}) // void createEntry(int hash, K key, V value, int bucketIndex) { // Entry<K,V> e = table[bucketIndex]; // table[bucketIndex] = new Entry<K,V>(hash, key, value, e); // size++; // } private abstract class HashIterator<E> implements Iterator<E> { Entry<K, V> next; // next entry to return int expectedModCount; // For fast-fail int index; // current slot Entry<K, V> current; // current entry HashIterator() { expectedModCount = modCount; if (size > 0) { // advance to first entry Entry[] t = table; while (index < t.length && (next = t[index++]) == null) ; } } public final boolean hasNext() { return next != null; } final Entry<K, V> nextEntry() { if (modCount != expectedModCount){ throw new ConcurrentModificationException(); } Entry<K, V> e = next; if (e == null){ throw new NoSuchElementException(); } if ((next = e.next) == null) { Entry[] t = table; while (index < t.length && (next = t[index++]) == null) ; } current = e; return e; } public void remove() { if (current == null) throw new IllegalStateException(); if (modCount != expectedModCount) throw new ConcurrentModificationException(); Object k = current.key; current = null; HashMap.this.removeEntryForKey(k); expectedModCount = modCount; } } private final class ValueIterator extends HashIterator<V> { public V next() { return nextEntry().value; } } private final class KeyIterator extends HashIterator<K> { public K next() { return nextEntry().getKey(); } } private final class EntryIterator extends HashIterator<Map.Entry<K,V>> { public Map.Entry<K,V> next() { return nextEntry(); } } // Subclass overrides these to alter behavior of views' iterator() method Iterator<K> newKeyIterator() { return new KeyIterator(); } Iterator<V> newValueIterator() { return new ValueIterator(); } Iterator<Map.Entry<K,V>> newEntryIterator() { return new EntryIterator(); } // Views private transient Set<Map.Entry<K,V>> entrySet = null; /** * Returns a {@link Set} view of the keys contained in this map. * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. If the map is modified * while an iteration over the set is in progress (except through * the iterator's own <tt>remove</tt> operation), the results of * the iteration are undefined. The set supports element removal, * which removes the corresponding mapping from the map, via the * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>, * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> * operations. It does not support the <tt>add</tt> or <tt>addAll</tt> * operations. */ @MemSafe(risk = {MemoryRisk.LAZY}) public Set<K> keySet() { return keySet; // Set<K> ks = keySet; // // if(ks!=null){ // return ks; // }else{ // ManagedMemory.executeInAreaOf(table, new Runnable() { // // @Override // public void run() { // // TODO Auto-generated method stub // keySet = new KeySet(); // // } // }); // return keySet; // } // return (ks != null ? ks : (keySet = new KeySet())); } private final class KeySet extends AbstractSet<K> { public Iterator<K> iterator() { return newKeyIterator(); } public int size() { return size; } public boolean contains(Object o) { return containsKey(o); } public boolean remove(Object o) { Entry<K,V> e = HashMap.this.removeEntryForKey(o); if (e == null) { return false; } else { /* Return the entry to the entry pool */ e.isFree = true; e.hash = 0; /* * Key and Value objects should also be returned * to their respective pools */ e.key = null; e.value = null; e.next = null; return true; } // return HashMap.this.removeEntryForKey(o) != null; } public void clear() { HashMap.this.clear(); } } /** * Returns a {@link Collection} view of the values contained in this map. * The collection is backed by the map, so changes to the map are * reflected in the collection, and vice-versa. If the map is * modified while an iteration over the collection is in progress * (except through the iterator's own <tt>remove</tt> operation), * the results of the iteration are undefined. The collection * supports element removal, which removes the corresponding * mapping from the map, via the <tt>Iterator.remove</tt>, * <tt>Collection.remove</tt>, <tt>removeAll</tt>, * <tt>retainAll</tt> and <tt>clear</tt> operations. It does not * support the <tt>add</tt> or <tt>addAll</tt> operations. */ @MemSafe(risk = {MemoryRisk.LAZY}) public Collection<V> values() { return values; // Collection<V> vs = values; // return (vs != null ? vs : (values = new Values())); } private final class Values extends AbstractCollection<V> { public Iterator<V> iterator() { return newValueIterator(); } public int size() { return size; } public boolean contains(Object o) { return containsValue(o); } public void clear() { HashMap.this.clear(); } } /** * Returns a {@link Set} view of the mappings contained in this map. * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. If the map is modified * while an iteration over the set is in progress (except through * the iterator's own <tt>remove</tt> operation, or through the * <tt>setValue</tt> operation on a map entry returned by the * iterator) the results of the iteration are undefined. The set * supports element removal, which removes the corresponding * mapping from the map, via the <tt>Iterator.remove</tt>, * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and * <tt>clear</tt> operations. It does not support the * <tt>add</tt> or <tt>addAll</tt> operations. * * @return a set view of the mappings contained in this map */ @MemSafe(risk = {MemoryRisk.LAZY}) public Set<Map.Entry<K, V>> entrySet() { return entrySet; // return entrySet0(); } // @MemSafe(risk = {MemoryRisk.LAZY}) // private Set<Map.Entry<K, V>> entrySet0() { // Set<Map.Entry<K, V>> es = entrySet; // if (es != null) { // return es; // } else { // ManagedMemory.executeInAreaOf(this, new Runnable() { // @Override // public void run() { // // TODO Auto-generated method stub // entrySet = new EntrySet(); // } // }); // return entrySet; // } // //// return es != null ? es : (entrySet = new EntrySet()); // } private final class EntrySet extends AbstractSet<Map.Entry<K,V>> { public Iterator<Map.Entry<K,V>> iterator() { return newEntryIterator(); } public boolean contains(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry<K,V> e = (Map.Entry<K,V>) o; Entry<K,V> candidate = getEntry(e.getKey()); return candidate != null && candidate.equals(e); } public boolean remove(Object o) { return removeMapping(o) != null; } public int size() { return size; } public void clear() { HashMap.this.clear(); } } // /** // * Save the state of the <tt>HashMap</tt> instance to a stream (i.e., // * serialize it). // * // * @serialData The <i>capacity</i> of the HashMap (the length of the // * bucket array) is emitted (int), followed by the // * <i>size</i> (an int, the number of key-value // * mappings), followed by the key (Object) and value (Object) // * for each key-value mapping. The key-value mappings are // * emitted in no particular order. // */ // private void writeObject(java.io.ObjectOutputStream s) // throws IOException // { // Iterator<Map.Entry<K,V>> i = // (size > 0) ? entrySet0().iterator() : null; // // // Write out the threshold, loadfactor, and any hidden stuff // s.defaultWriteObject(); // // // Write out number of buckets // s.writeInt(table.length); // // // Write out size (number of Mappings) // s.writeInt(size); // // // Write out keys and values (alternating) // if (i != null) { // while (i.hasNext()) { // Map.Entry<K,V> e = i.next(); // s.writeObject(e.getKey()); // s.writeObject(e.getValue()); // } // } // } // private static final long serialVersionUID = 362498820763181265L; // // /** // * Reconstitute the <tt>HashMap</tt> instance from a stream (i.e., // * deserialize it). // */ // private void readObject(java.io.ObjectInputStream s) // throws IOException, ClassNotFoundException // { // // Read in the threshold, loadfactor, and any hidden stuff // s.defaultReadObject(); // // // Read in number of buckets and allocate the bucket array; // int numBuckets = s.readInt(); // table = new Entry[numBuckets]; // // init(); // Give subclass a chance to do its thing. // // // Read in size (number of Mappings) // int size = s.readInt(); // // // Read the keys and values, and put the mappings in the HashMap // for (int i=0; i<size; i++) { // K key = (K) s.readObject(); // V value = (V) s.readObject(); // putForCreate(key, value); // } // } // These methods are used when serializing HashSets public int capacity() { return table.length; } // float loadFactor() { return loadFactor; } }