/* * * * Copyright 1990-2009 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License version * 2 only, as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License version 2 for more details (a copy is * included at /legal/license.txt). * * You should have received a copy of the GNU General Public License * version 2 along with this work; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA * 02110-1301 USA * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa * Clara, CA 95054 or visit www.sun.com if you need additional * information or have any questions. */ package java.lang; //import com.sun.cldchi.jvm.JVM; class FloatingDecimal { boolean isExceptional; boolean isNegative; int decExponent; char digits[]; int nDigits; int bigIntExp; int bigIntNBits; boolean mustSetRoundDir = false; int roundDir; // set by doubleValue private FloatingDecimal(boolean negSign, int decExponent, char[] digits, int n, boolean e) { isNegative = negSign; isExceptional = e; this.decExponent = decExponent; this.digits = digits; this.nDigits = n; } /* * Constants of the implementation Most are IEEE-754 related. (There are * more really boring constants at the end.) */ static final long signMask = 0x8000000000000000L; static final long expMask = 0x7ff0000000000000L; static final long fractMask = ~(signMask | expMask); static final int expShift = 52; static final int expBias = 1023; static final long fractHOB = (1L << expShift); // assumed High-Order bit static final long expOne = ((long) expBias) << expShift; // exponent of 1.0 static final int maxSmallBinExp = 62; static final int minSmallBinExp = -(63 / 3); static final int maxDecimalDigits = 15; static final int maxDecimalExponent = 308; static final int minDecimalExponent = -324; static final int bigDecimalExponent = 324; // i.e. abs(minDecimalExponent) static final long highbyte = 0xff00000000000000L; static final long highbit = 0x8000000000000000L; static final long lowbytes = ~highbyte; static final int singleSignMask = 0x80000000; static final int singleExpMask = 0x7f800000; static final int singleFractMask = ~(singleSignMask | singleExpMask); static final int singleExpShift = 23; static final int singleFractHOB = 1 << singleExpShift; static final int singleExpBias = 127; static final int singleMaxDecimalDigits = 7; static final int singleMaxDecimalExponent = 38; static final int singleMinDecimalExponent = -45; static final int intDecimalDigits = 9; /* * count number of bits from high-order 1 bit to low-order 1 bit, inclusive. */ private static int countBits(long v) { // // the strategy is to shift until we get a non-zero sign bit // then shift until we have no bits left, counting the difference. // we do byte shifting as a special fix. // if (v == 0L) return 0; while ((v & highbyte) == 0L) { v <<= 8; } while (v > 0L) { // i.e. while ((v&highbit) == 0L ) v <<= 1; } int n = 0; while ((v & lowbytes) != 0L) { v <<= 8; n += 8; } while (v != 0L) { v <<= 1; n += 1; } return n; } /* * Keep big powers of 5 handy for future reference. */ private static FDBigInt b5p[]; // private static synchronized FDBigInt big5pow(int p) { private static FDBigInt big5pow(int p) { if (p < 0) { throw new RuntimeException( /* #ifdef VERBOSE_EXCEPTIONS */ // / skipped "Assertion botch: negative power of 5" /* #endif */ ); } if (b5p == null) { b5p = new FDBigInt[p + 1]; } else if (b5p.length <= p) { FDBigInt t[] = new FDBigInt[p + 1]; // JVM.unchecked_obj_arraycopy(b5p, 0, t, 0, b5p.length); System.arraycopy(b5p, 0, t, 0, b5p.length); b5p = t; } if (b5p[p] != null) return b5p[p]; else if (p < small5pow.length) return b5p[p] = new FDBigInt(small5pow[p]); else if (p < long5pow.length) return b5p[p] = new FDBigInt(long5pow[p]); else { // construct the value. // recursively. int q, r; // in order to compute 5^p, // compute its square root, 5^(p/2) and square. // or, let q = p / 2, r = p -q, then // 5^p = 5^(q+r) = 5^q * 5^r q = p >> 1; r = p - q; FDBigInt bigq = b5p[q]; if (bigq == null) bigq = big5pow(q); if (r < small5pow.length) { return (b5p[p] = bigq.mult(small5pow[r])); } else { FDBigInt bigr = b5p[r]; if (bigr == null) bigr = big5pow(r); return (b5p[p] = bigq.mult(bigr)); } } } // // a common operation // private static FDBigInt multPow52(FDBigInt v, int p5, int p2) { if (p5 != 0) { if (p5 < small5pow.length) { v = v.mult(small5pow[p5]); } else { v = v.mult(big5pow(p5)); } } if (p2 != 0) { v.lshiftMe(p2); } return v; } // // another common operation // private static FDBigInt constructPow52(int p5, int p2) { FDBigInt v = new FDBigInt(big5pow(p5)); if (p2 != 0) { v.lshiftMe(p2); } return v; } /* * Make a floating double into a FDBigInt. This could also be structured as * a FDBigInt constructor, but we'd have to build a lot of knowledge about * floating-point representation into it, and we don't want to. * * AS A SIDE EFFECT, THIS METHOD WILL SET THE INSTANCE VARIABLES bigIntExp * and bigIntNBits */ private FDBigInt doubleToBigInt(double dval) { long lbits = Double.doubleToLongBits(dval) & ~signMask; int binexp = (int) (lbits >>> expShift); lbits &= fractMask; if (binexp > 0) { lbits |= fractHOB; } else { if (lbits == 0L) { throw new RuntimeException( /* #ifdef VERBOSE_EXCEPTIONS */ // / skipped "Assertion botch: doubleToBigInt(0.0)" /* #endif */ ); } binexp += 1; while ((lbits & fractHOB) == 0L) { lbits <<= 1; binexp -= 1; } } binexp -= expBias; int nbits = countBits(lbits); /* * We now know where the high-order 1 bit is, and we know how many there * are. */ int lowOrderZeros = expShift + 1 - nbits; lbits >>>= lowOrderZeros; bigIntExp = binexp + 1 - nbits; bigIntNBits = nbits; return new FDBigInt(lbits); } /* * Compute a number that is the ULP of the given value, for purposes of * addition/subtraction. Generally easy. More difficult if subtracting and * the argument is a normalized a power of 2, as the ULP changes at these * points. */ private static double ulp(double dval, boolean subtracting) { long lbits = Double.doubleToLongBits(dval) & ~signMask; int binexp = (int) (lbits >>> expShift); double ulpval; if (subtracting && (binexp >= expShift) && ((lbits & fractMask) == 0L)) { // for subtraction from normalized, powers of 2, // use next-smaller exponent binexp -= 1; } if (binexp > expShift) { ulpval = Double .longBitsToDouble(((long) (binexp - expShift)) << expShift); } else if (binexp == 0) { ulpval = Double.MIN_VALUE; } else { ulpval = Double.longBitsToDouble(1L << (binexp - 1)); } if (subtracting) ulpval = -ulpval; return ulpval; } /* * Round a double to a float. In addition to the fraction bits of the * double, look at the class instance variable roundDir, which should help * us avoid double-rounding error. roundDir was set in hardValueOf if the * estimate was close enough, but not exact. It tells us which direction of * rounding is preferred. */ float stickyRound(double dval) { long lbits = Double.doubleToLongBits(dval); long binexp = lbits & expMask; if (binexp == 0L || binexp == expMask) { // what we have here is special. // don't worry, the right thing will happen. return (float) dval; } lbits += (long) roundDir; return (float) Double.longBitsToDouble(lbits); } /* * This is the easy subcase -- all the significant bits, after scaling, are * held in lvalue. negSign and decExponent tell us what processing and * scaling has already been done. Exceptional cases have already been * stripped out. In particular: lvalue is a finite number (not Inf, nor NaN) * lvalue > 0L (not zero, nor negative). * * The only reason that we develop the digits here, rather than calling on * Long.toString() is that we can do it a little faster, and besides want to * treat trailing 0s specially. If Long.toString changes, we should * re-evaluate this strategy! */ private void developLongDigits(int decExponent, long lvalue, long insignificant) { char digits[]; int ndigits; int digitno; int c; // // Discard non-significant low-order bits, while rounding, // up to insignificant value. int i; for (i = 0; insignificant >= 10L; i++) insignificant /= 10L; if (i != 0) { long pow10 = long5pow[i] << i; // 10^i == 5^i * 2^i; long residue = lvalue % pow10; lvalue /= pow10; decExponent += i; if (residue >= (pow10 >> 1)) { // round up based on the low-order bits we're discarding lvalue++; } } if (lvalue <= Integer.MAX_VALUE) { if (lvalue <= 0L) { throw new RuntimeException( /* #ifdef VERBOSE_EXCEPTIONS */ // / skipped "Assertion botch: value "+lvalue+" <= 0" /* #endif */ ); } // even easier subcase! // can do int arithmetic rather than long! int ivalue = (int) lvalue; digits = new char[ndigits = 10]; digitno = ndigits - 1; c = ivalue % 10; ivalue /= 10; while (c == 0) { decExponent++; c = ivalue % 10; ivalue /= 10; } while (ivalue != 0) { digits[digitno--] = (char) (c + '0'); decExponent++; c = ivalue % 10; ivalue /= 10; } digits[digitno] = (char) (c + '0'); } else { // same algorithm as above (same bugs, too ) // but using long arithmetic. digits = new char[ndigits = 20]; digitno = ndigits - 1; c = (int) (lvalue % 10L); lvalue /= 10L; while (c == 0) { decExponent++; c = (int) (lvalue % 10L); lvalue /= 10L; } while (lvalue != 0L) { digits[digitno--] = (char) (c + '0'); decExponent++; c = (int) (lvalue % 10L); lvalue /= 10; } digits[digitno] = (char) (c + '0'); } char result[]; ndigits -= digitno; if (digitno == 0) result = digits; else { result = new char[ndigits]; // JVM.unchecked_char_arraycopy(digits, digitno, result, 0, ndigits); System.arraycopy(digits, digitno, result, 0, ndigits); } this.digits = result; this.decExponent = decExponent + 1; this.nDigits = ndigits; } // // add one to the least significant digit. // deal with carry out. // assert that this will only happen where there // is only one digit, e.g. (float)1e-44 seems to do it. // private void roundup() { int i; int q = digits[i = (nDigits - 1)]; if (q == '9') { while (q == '9' && i > 0) { digits[i] = '0'; q = digits[--i]; } if (q == '9') { // carryout! High-order 1, rest 0s, larger exp. decExponent += 1; digits[0] = '1'; return; } // else fall through. } digits[i] = (char) (q + 1); } /* * FIRST IMPORTANT CONSTRUCTOR: DOUBLE */ public FloatingDecimal(double d) { long dBits = Double.doubleToLongBits(d); long fractBits; int binExp; int nSignificantBits; // discover and delete sign if ((dBits & signMask) != 0) { isNegative = true; dBits ^= signMask; } else { isNegative = false; } // Begin to unpack // Discover obvious special cases of NaN and Infinity. binExp = (int) ((dBits & expMask) >> expShift); fractBits = dBits & fractMask; if (binExp == (int) (expMask >> expShift)) { isExceptional = true; if (fractBits == 0L) { digits = infinity; } else { digits = notANumber; isNegative = false; // NaN has no sign! } nDigits = digits.length; return; } isExceptional = false; // Finish unpacking // Normalize denormalized numbers. // Insert assumed high-order bit for normalized numbers. // Subtract exponent bias. if (binExp == 0) { if (fractBits == 0L) { // not a denorm, just a 0! decExponent = 0; digits = zero; nDigits = 1; return; } while ((fractBits & fractHOB) == 0L) { fractBits <<= 1; binExp -= 1; } nSignificantBits = expShift + binExp + 1; // recall binExp is - // shift count. binExp += 1; } else { fractBits |= fractHOB; nSignificantBits = expShift + 1; } binExp -= expBias; // call the routine that actually does all the hard work. dtoa(binExp, fractBits, nSignificantBits); } /* * SECOND IMPORTANT CONSTRUCTOR: SINGLE */ /* public */FloatingDecimal(float f) { int fBits = Float.floatToIntBits(f); int fractBits; int binExp; int nSignificantBits; // discover and delete sign if ((fBits & singleSignMask) != 0) { isNegative = true; fBits ^= singleSignMask; } else { isNegative = false; } // Begin to unpack // Discover obvious special cases of NaN and Infinity. binExp = (int) ((fBits & singleExpMask) >> singleExpShift); fractBits = fBits & singleFractMask; if (binExp == (int) (singleExpMask >> singleExpShift)) { isExceptional = true; if (fractBits == 0L) { digits = infinity; } else { digits = notANumber; isNegative = false; // NaN has no sign! } nDigits = digits.length; return; } isExceptional = false; // Finish unpacking // Normalize denormalized numbers. // Insert assumed high-order bit for normalized numbers. // Subtract exponent bias. if (binExp == 0) { if (fractBits == 0) { // not a denorm, just a 0! decExponent = 0; digits = zero; nDigits = 1; return; } while ((fractBits & singleFractHOB) == 0) { fractBits <<= 1; binExp -= 1; } nSignificantBits = singleExpShift + binExp + 1; // recall binExp is // - shift count. binExp += 1; } else { fractBits |= singleFractHOB; nSignificantBits = singleExpShift + 1; } binExp -= singleExpBias; // call the routine that actually does all the hard work. dtoa(binExp, ((long) fractBits) << (expShift - singleExpShift), nSignificantBits); } private void dtoa(int binExp, long fractBits, int nSignificantBits) { int nFractBits; // number of significant bits of fractBits; int nTinyBits; // number of these to the right of the point. int decExp; // Examine number. Determine if it is an easy case, // which we can do pretty trivially using float/long conversion, // or whether we must do real work. nFractBits = countBits(fractBits); nTinyBits = Math.max(0, nFractBits - binExp - 1); if (binExp <= maxSmallBinExp && binExp >= minSmallBinExp) { // Look more closely at the number to decide if, // with scaling by 10^nTinyBits, the result will fit in // a long. if ((nTinyBits < long5pow.length) && ((nFractBits + n5bits[nTinyBits]) < 64)) { /* * We can do this: take the fraction bits, which are normalized. * (a) nTinyBits == 0: Shift left or right appropriately to * align the binary point at the extreme right, i.e. where a * long int point is expected to be. The integer result is * easily converted to a string. (b) nTinyBits > 0: Shift right * by expShift-nFractBits, which effectively converts to long * and scales by 2^nTinyBits. Then multiply by 5^nTinyBits to * complete the scaling. We know this won't overflow because we * just counted the number of bits necessary in the result. The * integer you get from this can then be converted to a string * pretty easily. */ long halfULP; if (nTinyBits == 0) { if (binExp > nSignificantBits) { halfULP = 1L << (binExp - nSignificantBits - 1); } else { halfULP = 0L; } if (binExp >= expShift) { fractBits <<= (binExp - expShift); } else { fractBits >>>= (expShift - binExp); } developLongDigits(0, fractBits, halfULP); return; } /* * The following causes excess digits to be printed out in the * single-float case. Our manipulation of halfULP here is * apparently not correct. If we better understand how this * works, perhaps we can use this special case again. But for * the time being, we do not. else { fractBits >>>= * expShift+1-nFractBits; fractBits *= long5pow[ nTinyBits ]; * halfULP = long5pow[ nTinyBits ] >> * (1+nSignificantBits-nFractBits); developLongDigits( * -nTinyBits, fractBits, halfULP ); return; } */ } } /* * This is the hard case. We are going to compute large positive * integers B and S and integer decExp, s.t. d = ( B / S ) * 10^decExp 1 * <= B / S < 10 Obvious choices are: decExp = floor( log10(d) ) B = d * * 2^nTinyBits * 10^max( 0, -decExp ) S = 10^max( 0, decExp) * * 2^nTinyBits (noting that nTinyBits has already been forced to * non-negative) I am also going to compute a large positive integer M = * (1/2^nSignificantBits) * 2^nTinyBits * 10^max( 0, -decExp ) i.e. M is * (1/2) of the ULP of d, scaled like B. When we iterate through * dividing B/S and picking off the quotient bits, we will know when to * stop when the remainder is <= M. * * We keep track of powers of 2 and powers of 5. */ /* * Estimate decimal exponent. (If it is small-ish, we could * double-check.) * * First, scale the mantissa bits such that 1 <= d2 < 2. We are then * going to estimate log10(d2) ~=~ (d2-1.5)/1.5 + log(1.5) and so we can * estimate log10(d) ~=~ log10(d2) + binExp * log10(2) take the floor * and call it decExp. IMPL_NOTE -- use more precise constants here. It * costs no more. */ double d2 = Double.longBitsToDouble(expOne | (fractBits & ~fractHOB)); decExp = (int) Math.floor((d2 - 1.5D) * 0.289529654D + 0.176091259 + (double) binExp * 0.301029995663981); int B2, B5; // powers of 2 and powers of 5, respectively, in B int S2, S5; // powers of 2 and powers of 5, respectively, in S int M2, M5; // powers of 2 and powers of 5, respectively, in M // int Bbits; // binary digits needed to represent B, approx. // int tenSbits; // binary digits needed to represent 10*S, approx. // To prevent this method from using more than 31 local variables // (JOP limit) Bbits and tenSbits are stored in the following array int[] bits = new int[2]; FDBigInt Sval, Bval, Mval; B5 = Math.max(0, -decExp); B2 = B5 + nTinyBits + binExp; S5 = Math.max(0, decExp); S2 = S5 + nTinyBits; M5 = B5; M2 = B2 - nSignificantBits; /* * the long integer fractBits contains the (nFractBits) interesting bits * from the mantissa of d ( hidden 1 added if necessary) followed by * (expShift+1-nFractBits) zeros. In the interest of compactness, I will * shift out those zeros before turning fractBits into a FDBigInt. The * resulting whole number will be d * 2^(nFractBits-1-binExp). */ fractBits >>>= (expShift + 1 - nFractBits); B2 -= nFractBits - 1; int common2factor = Math.min(B2, S2); B2 -= common2factor; S2 -= common2factor; M2 -= common2factor; /* * IMPL_NOTE: For exact powers of two, the next smallest number is only * half as far away as we think (because the meaning of ULP changes at * power-of-two bounds) for this reason, we fix M2. */ if (nFractBits == 1) M2 -= 1; if (M2 < 0) { // oops. // since we cannot scale M down far enough, // we must scale the other values up. B2 -= M2; S2 -= M2; M2 = 0; } /* * Construct, Scale, iterate. We use a symmetric test. */ char digits[] = this.digits = new char[18]; int ndigit = 0; boolean low, high; long lowDigitDifference; int q; /* * Detect the special cases where all the numbers we are about to * compute will fit in int or long integers. In these cases, we will * avoid doing FDBigInt arithmetic. We use the same algorithms, except * that we "normalize" our FDBigInts before iterating. This is to make * division easier, as it makes our fist guess (quotient of high-order * words) more accurate! * * We use a symmetric test. */ // Bbits = nFractBits + B2 bits[0] = nFractBits + B2 + ((B5 < n5bits.length) ? n5bits[B5] : (B5 * 3)); // tenSbits = S2 bits[1] = S2 + 1 + (((S5 + 1) < n5bits.length) ? n5bits[(S5 + 1)] : ((S5 + 1) * 3)); // if (Bbits < 64 && tenSbits < 64) { if (bits[0] < 64 && bits[1] < 64) { // if (Bbits < 32 && tenSbits < 32) { if (bits[0] < 32 && bits[1] < 32) { // wa-hoo! They're all ints! int b = ((int) fractBits * small5pow[B5]) << B2; int s = small5pow[S5] << S2; int m = small5pow[M5] << M2; int tens = s * 10; /* * Unroll the first iteration. If our decExp estimate was too * high, our first quotient will be zero. In this case, we * discard it and decrement decExp. */ ndigit = 0; q = (int) (b / s); b = 10 * (b % s); m *= 10; low = (b < m); high = (b + m > tens); if (q >= 10) { // bummer, dude throw new RuntimeException( /* #ifdef VERBOSE_EXCEPTIONS */ // / skipped "Assertion botch: excessivly large digit "+q /* #endif */ ); } else if ((q == 0) && !high) { // oops. Usually ignore leading zero. decExp--; } else { digits[ndigit++] = (char) ('0' + q); } /* * IMPL_NOTE: Java spec sez that we always have at least one * digit after the . in either F- or E-form output. Thus we will * need more than one digit if we're using E-form */ if (decExp <= -3 || decExp >= 8) { high = low = false; } while (!low && !high) { q = (int) (b / s); b = 10 * (b % s); m *= 10; if (q >= 10) { // bummer, dude throw new RuntimeException( /* #ifdef VERBOSE_EXCEPTIONS */ // / skipped // "Assertion botch: excessivly large digit "+q /* #endif */ ); } if (m > 0L) { low = (b < m); high = (b + m > tens); } else { // m might overflow! // in this case, it is certainly > b, // which won't // and b+m > tens, too, since that has overflowed // either! low = true; high = true; } digits[ndigit++] = (char) ('0' + q); } lowDigitDifference = (b << 1) - tens; } else { // still good! they're all longs! long b = (fractBits * long5pow[B5]) << B2; long s = long5pow[S5] << S2; long m = long5pow[M5] << M2; long tens = s * 10L; /* * Unroll the first iteration. If our decExp estimate was too * high, our first quotient will be zero. In this case, we * discard it and decrement decExp. */ ndigit = 0; q = (int) (b / s); b = 10L * (b % s); m *= 10L; low = (b < m); high = (b + m > tens); if (q >= 10) { // bummer, dude throw new RuntimeException( /* #ifdef VERBOSE_EXCEPTIONS */ // / skipped "Assertion botch: excessivly large digit "+q /* #endif */ ); } else if ((q == 0) && !high) { // oops. Usually ignore leading zero. decExp--; } else { digits[ndigit++] = (char) ('0' + q); } /* * IMPL_NOTE: Java spec sez that we always have at least one * digit after the . in either F- or E-form output. Thus we will * need more than one digit if we're using E-form */ if (decExp <= -3 || decExp >= 8) { high = low = false; } while (!low && !high) { q = (int) (b / s); b = 10 * (b % s); m *= 10; if (q >= 10) { // bummer, dude throw new RuntimeException( /* #ifdef VERBOSE_EXCEPTIONS */ // / skipped // "Assertion botch: excessivly large digit "+q /* #endif */ ); } if (m > 0L) { low = (b < m); high = (b + m > tens); } else { // m might overflow! // in this case, it is certainly > b, // which won't // and b+m > tens, too, since that has overflowed // either! low = true; high = true; } digits[ndigit++] = (char) ('0' + q); } lowDigitDifference = (b << 1) - tens; } } else { FDBigInt tenSval; int shiftBias; /* * We really must do FDBigInt arithmetic. Fist, construct our * FDBigInt initial values. */ Bval = multPow52(new FDBigInt(fractBits), B5, B2); Sval = constructPow52(S5, S2); Mval = constructPow52(M5, M2); // normalize so that division works better Bval.lshiftMe(shiftBias = Sval.normalizeMe()); Mval.lshiftMe(shiftBias); tenSval = Sval.mult(10); /* * Unroll the first iteration. If our decExp estimate was too high, * our first quotient will be zero. In this case, we discard it and * decrement decExp. */ ndigit = 0; q = Bval.quoRemIteration(Sval); Mval = Mval.mult(10); low = (Bval.cmp(Mval) < 0); high = (Bval.add(Mval).cmp(tenSval) > 0); if (q >= 10) { // bummer, dude throw new RuntimeException( /* #ifdef VERBOSE_EXCEPTIONS */ // / skipped "Assertion botch: excessivly large digit "+q /* #endif */ ); } else if ((q == 0) && !high) { // oops. Usually ignore leading zero. decExp--; } else { digits[ndigit++] = (char) ('0' + q); } /* * IMPL_NOTE: Java spec sez that we always have at least one digit * after the . in either F- or E-form output. Thus we will need more * than one digit if we're using E-form */ if (decExp <= -3 || decExp >= 8) { high = low = false; } while (!low && !high) { q = Bval.quoRemIteration(Sval); Mval = Mval.mult(10); if (q >= 10) { // bummer, dude throw new RuntimeException( /* #ifdef VERBOSE_EXCEPTIONS */ // / skipped "Assertion botch: excessivly large digit "+q /* #endif */ ); } low = (Bval.cmp(Mval) < 0); high = (Bval.add(Mval).cmp(tenSval) > 0); digits[ndigit++] = (char) ('0' + q); } if (high && low) { Bval.lshiftMe(1); lowDigitDifference = Bval.cmp(tenSval); } else lowDigitDifference = 0L; // this here only for flow analysis! } this.decExponent = decExp + 1; this.digits = digits; this.nDigits = ndigit; /* * Last digit gets rounded based on stopping condition. */ if (high) { if (low) { if (lowDigitDifference == 0L) { // it's a tie! // choose based on which digits we like. if ((digits[nDigits - 1] & 1) != 0) roundup(); } else if (lowDigitDifference > 0) { roundup(); } } else { roundup(); } } } public String toString() { StringBuffer result = new StringBuffer(nDigits + 8); if (isNegative) { result.append('-'); } if (isExceptional) { result.append(digits, 0, nDigits); } else { result.append("0."); result.append(digits, 0, nDigits); result.append('e'); result.append(decExponent); } return new String(result); } public String toJavaFormatString() { char result[] = new char[nDigits + 10]; int i = 0; if (isNegative) { result[0] = '-'; i = 1; } if (isExceptional) { // JVM.unchecked_char_arraycopy(digits, 0, result, i, nDigits); System.arraycopy(digits, 0, result, i, nDigits); i += nDigits; } else { if (decExponent > 0 && decExponent < 8) { // print digits.digits. int charLength = Math.min(nDigits, decExponent); // JVM.unchecked_char_arraycopy(digits, 0, result, i, charLength); System.arraycopy(digits, 0, result, i, charLength); i += charLength; if (charLength < decExponent) { charLength = decExponent - charLength; // JVM.unchecked_char_arraycopy(zero, 0, result, i,charLength); System.arraycopy(zero, 0, result, i, charLength); i += charLength; result[i++] = '.'; result[i++] = '0'; } else { result[i++] = '.'; if (charLength < nDigits) { int t = nDigits - charLength; // JVM.unchecked_char_arraycopy(digits, charLength,result, i, t); System.arraycopy(digits, charLength,result, i, t); i += t; } else { result[i++] = '0'; } } } else if (decExponent <= 0 && decExponent > -3) { result[i++] = '0'; result[i++] = '.'; if (decExponent != 0) { // JVM.unchecked_char_arraycopy( zero, 0, result, i, // -decExponent ); System.arraycopy(zero, 0, result, i, -decExponent); i -= decExponent; } // JVM.unchecked_char_arraycopy( digits, 0, result, i, nDigits // ); System.arraycopy(digits, 0, result, i, nDigits); i += nDigits; } else { result[i++] = digits[0]; result[i++] = '.'; if (nDigits > 1) { // JVM.unchecked_char_arraycopy( digits, 1, result, i, // nDigits-1 ); System.arraycopy(digits, 1, result, i, nDigits - 1); i += nDigits - 1; } else { result[i++] = '0'; } result[i++] = 'E'; int e; if (decExponent <= 0) { result[i++] = '-'; e = -decExponent + 1; } else { e = decExponent - 1; } // decExponent has 1, 2, or 3, digits if (e <= 9) { result[i++] = (char) (e + '0'); } else if (e <= 99) { result[i++] = (char) (e / 10 + '0'); result[i++] = (char) (e % 10 + '0'); } else { result[i++] = (char) (e / 100 + '0'); e %= 100; result[i++] = (char) (e / 10 + '0'); result[i++] = (char) (e % 10 + '0'); } } } return new String(result, 0, i); } public static FloatingDecimal readJavaFormatString(String in) throws NumberFormatException { boolean isNegative = false; boolean signSeen = false; int decExp; char c; parseNumber: try { in = in.trim(); // throws NullPointerException if null int l = in.length(); if (l == 0) { throw new NumberFormatException( /* #ifdef VERBOSE_EXCEPTIONS */ // / skipped "empty String" /* #endif */ ); } int i = 0; switch (c = in.charAt(i)) { case '-': isNegative = true; // FALLTHROUGH case '+': i++; signSeen = true; } // Would handle NaN and Infinity here, but it isn't // part of the spec! // char[] digits = new char[l]; int nDigits = 0; boolean decSeen = false; int decPt = 0; int nLeadZero = 0; int nTrailZero = 0; digitLoop: while (i < l) { switch (c = in.charAt(i)) { case '0': if (nDigits > 0) { nTrailZero += 1; } else { nLeadZero += 1; } break; // out of switch. case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': while (nTrailZero > 0) { digits[nDigits++] = '0'; nTrailZero -= 1; } digits[nDigits++] = c; break; // out of switch. case '.': if (decSeen) { // already saw one ., this is the 2nd. throw new NumberFormatException( /* #ifdef VERBOSE_EXCEPTIONS */ // / skipped "multiple points" /* #endif */ ); } decPt = i; if (signSeen) { decPt -= 1; } decSeen = true; break; // out of switch. default: break digitLoop; } i++; } /* * At this point, we've scanned all the digits and decimal point * we're going to see. Trim off leading and trailing zeros, which * will just confuse us later, and adjust our initial decimal * exponent accordingly. To review: we have seen i total characters. * nLeadZero of them were zeros before any other digits. nTrailZero * of them were zeros after any other digits. if ( decSeen ), then a * . was seen after decPt characters ( including leading zeros which * have been discarded ) nDigits characters were neither lead nor * trailing zeros, nor point */ /* * special fix: if we saw no non-zero digits, then the answer is * zero! Unfortunately, we feel honor-bound to keep parsing! */ if (nDigits == 0) { digits = zero; nDigits = 1; if (nLeadZero == 0) { // we saw NO DIGITS AT ALL, // not even a crummy 0! // this is not allowed. break parseNumber; // go throw exception } } /* * Our initial exponent is decPt, adjusted by the number of * discarded zeros. Or, if there was no decPt, then its just nDigits * adjusted by discarded trailing zeros. */ if (decSeen) { decExp = decPt - nLeadZero; } else { decExp = nDigits + nTrailZero; } /* * Look for 'e' or 'E' and an optionally signed integer. */ if ((i < l) && ((c = in.charAt(i)) == 'e') || (c == 'E')) { int expSign = 1; int expVal = 0; int reallyBig = Integer.MAX_VALUE / 10; boolean expOverflow = false; switch (in.charAt(++i)) { case '-': expSign = -1; // FALLTHROUGH case '+': i++; } int expAt = i; expLoop: while (i < l) { if (expVal >= reallyBig) { // the next character will cause integer // overflow. expOverflow = true; } switch (c = in.charAt(i++)) { case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': expVal = expVal * 10 + ((int) c - (int) '0'); continue; default: i--; // back up. break expLoop; // stop parsing exponent. } } int expLimit = bigDecimalExponent + nDigits + nTrailZero; if (expOverflow || (expVal > expLimit)) { // // The intent here is to end up with // infinity or zero, as appropriate. // The reason for yielding such a small decExponent, // rather than something intuitive such as // expSign*Integer.MAX_VALUE, is that this value // is subject to further manipulation in // doubleValue() and floatValue(), and I don't want // it to be able to cause overflow there! // (The only way we can get into trouble here is for // really outrageous nDigits+nTrailZero, such as 2 billion. // ) // decExp = expSign * expLimit; } else { // this should not overflow, since we tested // for expVal > (MAX+N), where N >= abs(decExp) decExp = decExp + expSign * expVal; } // if we saw something not a digit ( or end of string ) // after the [Ee][+-], without seeing any digits at all // this is certainly an error. If we saw some digits, // but then some trailing garbage, that might be ok. // so we just fall through in that case. // HUMBUG if (i == expAt) break parseNumber; // certainly bad } /* * We parsed everything we could. If there are leftovers, then this * is not good input! */ if (i < l && ((i != l - 1) || (in.charAt(i) != 'f' && in.charAt(i) != 'F' && in.charAt(i) != 'd' && in .charAt(i) != 'D'))) { break parseNumber; // go throw exception } return new FloatingDecimal(isNegative, decExp, digits, nDigits, false); } catch (StringIndexOutOfBoundsException e) { } throw new NumberFormatException( /* #ifdef VERBOSE_EXCEPTIONS */ // / skipped in /* #endif */ ); } /* * Take a FloatingDecimal, which we presumably just scanned in, and find out * what its value is, as a double. * * AS A SIDE EFFECT, SET roundDir TO INDICATE PREFERRED ROUNDING DIRECTION * in case the result is really destined for a single-precision float. */ public double doubleValue() { int kDigits = Math.min(nDigits, maxDecimalDigits + 1); long lValue; double dValue; double rValue, tValue; roundDir = 0; /* * convert the lead kDigits to a long integer. */ // (special performance fix: start to do it using int) int iValue = (int) digits[0] - (int) '0'; int iDigits = Math.min(kDigits, intDecimalDigits); for (int i = 1; i < iDigits; i++) { iValue = iValue * 10 + (int) digits[i] - (int) '0'; } lValue = (long) iValue; for (int i = iDigits; i < kDigits; i++) { lValue = lValue * 10L + (long) ((int) digits[i] - (int) '0'); } dValue = (double) lValue; int exp = decExponent - kDigits; /* * lValue now contains a long integer with the value of the first * kDigits digits of the number. dValue contains the (double) of the * same. */ if (nDigits <= maxDecimalDigits) { /* * possibly an easy case. We know that the digits can be represented * exactly. And if the exponent isn't too outrageous, the whole * thing can be done with one operation, thus one rounding error. * Note that all our constructors trim all leading and trailing * zeros, so simple values (including zero) will always end up here */ if (exp == 0 || dValue == 0.0) return (isNegative) ? -dValue : dValue; // small floating // integer else if (exp >= 0) { if (exp <= maxSmallTen) { /* * Can get the answer with one operation, thus one roundoff. */ rValue = dValue * small10pow[exp]; if (mustSetRoundDir) { tValue = rValue / small10pow[exp]; roundDir = (tValue == dValue) ? 0 : (tValue < dValue) ? 1 : -1; } return (isNegative) ? -rValue : rValue; } int slop = maxDecimalDigits - kDigits; if (exp <= maxSmallTen + slop) { /* * We can multiply dValue by 10^(slop) and it is still * "small" and exact. Then we can multiply by 10^(exp-slop) * with one rounding. */ dValue *= small10pow[slop]; rValue = dValue * small10pow[exp - slop]; if (mustSetRoundDir) { tValue = rValue / small10pow[exp - slop]; roundDir = (tValue == dValue) ? 0 : (tValue < dValue) ? 1 : -1; } return (isNegative) ? -rValue : rValue; } /* * Else we have a hard case with a positive exp. */ } else { if (exp >= -maxSmallTen) { /* * Can get the answer in one division. */ rValue = dValue / small10pow[-exp]; tValue = rValue * small10pow[-exp]; if (mustSetRoundDir) { roundDir = (tValue == dValue) ? 0 : (tValue < dValue) ? 1 : -1; } return (isNegative) ? -rValue : rValue; } /* * Else we have a hard case with a negative exp. */ } } /* * Harder cases: The sum of digits plus exponent is greater than what we * think we can do with one error. * * Start by approximating the right answer by, naively, scaling by * powers of 10. */ if (exp > 0) { if (decExponent > maxDecimalExponent + 1) { /* * Lets face it. This is going to be Infinity. Cut to the chase. */ return (isNegative) ? Double.NEGATIVE_INFINITY : Double.POSITIVE_INFINITY; } if ((exp & 15) != 0) { dValue *= small10pow[exp & 15]; } if ((exp >>= 4) != 0) { int j = 0; while (exp > 1) { if ((exp & 1) != 0) dValue *= big10pow[j]; j++; exp >>= 1; } /* * The reason for the exp > 1 condition in the above loop was so * that the last multiply would get unrolled. We handle it here. * It could overflow. */ double t = dValue * big10pow[j]; if (Double.isInfinite(t)) { /* * It did overflow. Look more closely at the result. If the * exponent is just one too large, then use the maximum * finite as our estimate value. Else call the result * infinity and punt it. ( I presume this could happen * because rounding forces the result here to be an ULP or * two larger than Double.MAX_VALUE ). */ t = dValue / 2.0; t *= big10pow[j]; if (Double.isInfinite(t)) { return (isNegative) ? Double.NEGATIVE_INFINITY : Double.POSITIVE_INFINITY; } t = Double.MAX_VALUE; } dValue = t; } } else if (exp < 0) { exp = -exp; if (decExponent < minDecimalExponent - 1) { /* * Lets face it. This is going to be zero. Cut to the chase. */ return (isNegative) ? -0.0 : 0.0; } if ((exp & 15) != 0) { dValue /= small10pow[exp & 15]; } if ((exp >>= 4) != 0) { int j = 0; while (exp > 1) { if ((exp & 1) != 0) dValue *= tiny10pow[j]; j++; exp >>= 1; } /* * The reason for the exp > 1 condition in the above loop was so * that the last multiply would get unrolled. We handle it here. * It could underflow. */ double t = dValue * tiny10pow[j]; if (t == 0.0) { /* * It did underflow. Look more closely at the result. If the * exponent is just one too small, then use the minimum * finite as our estimate value. Else call the result 0.0 * and punt it. ( I presume this could happen because * rounding forces the result here to be an ULP or two less * than Double.MIN_VALUE ). */ t = dValue * 2.0; t *= tiny10pow[j]; if (t == 0.0) { return (isNegative) ? -0.0 : 0.0; } t = Double.MIN_VALUE; } dValue = t; } } /* * dValue is now approximately the result. The hard part is adjusting * it, by comparison with FDBigInt arithmetic. Formulate the EXACT * big-number result as bigD0 * 10^exp */ FDBigInt bigD0 = new FDBigInt(lValue, digits, kDigits, nDigits); exp = decExponent - nDigits; correctionLoop: while (true) { /* * AS A SIDE EFFECT, THIS METHOD WILL SET THE INSTANCE VARIABLES * bigIntExp and bigIntNBits */ FDBigInt bigB = doubleToBigInt(dValue); /* * Scale bigD, bigB appropriately for big-integer operations. * Naively, we multiply by powers of ten and powers of two. What we * actually do is keep track of the powers of 5 and powers of 2 we * would use, then factor out common divisors before doing the work. */ int B2, B5; // powers of 2, 5 in bigB int D2, D5; // powers of 2, 5 in bigD int Ulp2; // powers of 2 in halfUlp. if (exp >= 0) { B2 = B5 = 0; D2 = D5 = exp; } else { B2 = B5 = -exp; D2 = D5 = 0; } if (bigIntExp >= 0) { B2 += bigIntExp; } else { D2 -= bigIntExp; } Ulp2 = B2; // shift bigB and bigD left by a number s. t. // halfUlp is still an integer. int hulpbias; if (bigIntExp + bigIntNBits <= -expBias + 1) { // This is going to be a denormalized number // (if not actually zero). // half an ULP is at 2^-(expBias+expShift+1) hulpbias = bigIntExp + expBias + expShift; } else { hulpbias = expShift + 2 - bigIntNBits; } B2 += hulpbias; D2 += hulpbias; // if there are common factors of 2, we might just as well // factor them out, as they add nothing useful. int common2 = Math.min(B2, Math.min(D2, Ulp2)); B2 -= common2; D2 -= common2; Ulp2 -= common2; // do multiplications by powers of 5 and 2 bigB = multPow52(bigB, B5, B2); FDBigInt bigD = multPow52(new FDBigInt(bigD0), D5, D2); // // to recap: // bigB is the scaled-big-int version of our floating-point // candidate. // bigD is the scaled-big-int version of the exact value // as we understand it. // halfUlp is 1/2 an ulp of bigB, except for special cases // of exact powers of 2 // // the plan is to compare bigB with bigD, and if the difference // is less than halfUlp, then we're satisfied. Otherwise, // use the ratio of difference to halfUlp to calculate a fudge // factor to add to the floating value, then go 'round again. // FDBigInt diff; int cmpResult; boolean overvalue; if ((cmpResult = bigB.cmp(bigD)) > 0) { overvalue = true; // our candidate is too big. diff = bigB.sub(bigD); if ((bigIntNBits == 1) && (bigIntExp > -expBias)) { // candidate is a normalized exact power of 2 and // is too big. We will be subtracting. // For our purposes, ulp is the ulp of the // next smaller range. Ulp2 -= 1; if (Ulp2 < 0) { // rats. Cannot de-scale ulp this far. // must scale diff in other direction. Ulp2 = 0; diff.lshiftMe(1); } } } else if (cmpResult < 0) { overvalue = false; // our candidate is too small. diff = bigD.sub(bigB); } else { // the candidate is exactly right! // this happens with surprising frequency break correctionLoop; } FDBigInt halfUlp = constructPow52(B5, Ulp2); if ((cmpResult = diff.cmp(halfUlp)) < 0) { // difference is small. // this is close enough roundDir = overvalue ? -1 : 1; break correctionLoop; } else if (cmpResult == 0) { // difference is exactly half an ULP // round to some other value maybe, then finish dValue += 0.5 * ulp(dValue, overvalue); // should check for bigIntNBits == 1 here?? roundDir = overvalue ? -1 : 1; break correctionLoop; } else { // difference is non-trivial. // could scale addend by ratio of difference to // halfUlp here, if we bothered to compute that difference. // Most of the time ( I hope ) it is about 1 anyway. dValue += ulp(dValue, overvalue); if (dValue == 0.0 || dValue == Double.POSITIVE_INFINITY) break correctionLoop; // oops. Fell off end of range. continue; // try again. } } return (isNegative) ? -dValue : dValue; } /* * Take a FloatingDecimal, which we presumably just scanned in, and find out * what its value is, as a float. This is distinct from doubleValue() to * avoid the case of a double rounding error, wherein the conversion to * double has one rounding error, and the conversion of that double to a * float has another rounding error, IN THE WRONG DIRECTION, ( because of * the preference to a zero low-order bit ). */ public float floatValue() { int kDigits = Math.min(nDigits, singleMaxDecimalDigits + 1); int iValue; float fValue; /* * convert the lead kDigits to an integer. */ iValue = (int) digits[0] - (int) '0'; for (int i = 1; i < kDigits; i++) { iValue = iValue * 10 + (int) digits[i] - (int) '0'; } fValue = (float) iValue; int exp = decExponent - kDigits; /* * iValue now contains an integer with the value of the first kDigits * digits of the number. fValue contains the (float) of the same. */ if (nDigits <= singleMaxDecimalDigits) { /* * possibly an easy case. We know that the digits can be represented * exactly. And if the exponent isn't too outrageous, the whole * thing can be done with one operation, thus one rounding error. * Note that all our constructors trim all leading and trailing * zeros, so simple values (including zero) will always end up here. */ if (exp == 0 || fValue == 0.0f) return (isNegative) ? -fValue : fValue; // small floating // integer else if (exp >= 0) { if (exp <= singleMaxSmallTen) { /* * Can get the answer with one operation, thus one roundoff. */ fValue *= singleSmall10pow[exp]; return (isNegative) ? -fValue : fValue; } int slop = singleMaxDecimalDigits - kDigits; if (exp <= singleMaxSmallTen + slop) { /* * We can multiply dValue by 10^(slop) and it is still * "small" and exact. Then we can multiply by 10^(exp-slop) * with one rounding. */ fValue *= singleSmall10pow[slop]; fValue *= singleSmall10pow[exp - slop]; return (isNegative) ? -fValue : fValue; } /* * Else we have a hard case with a positive exp. */ } else { if (exp >= -singleMaxSmallTen) { /* * Can get the answer in one division. */ fValue /= singleSmall10pow[-exp]; return (isNegative) ? -fValue : fValue; } /* * Else we have a hard case with a negative exp. */ } } else if ((decExponent >= nDigits) && (nDigits + decExponent <= maxDecimalDigits)) { /* * In double-precision, this is an exact floating integer. So we can * compute to double, then shorten to float with one round, and get * the right answer. * * First, finish accumulating digits. Then convert that integer to a * double, multiply by the appropriate power of ten, and convert to * float. */ long lValue = (long) iValue; for (int i = kDigits; i < nDigits; i++) { lValue = lValue * 10L + (long) ((int) digits[i] - (int) '0'); } double dValue = (double) lValue; exp = decExponent - nDigits; dValue *= small10pow[exp]; fValue = (float) dValue; return (isNegative) ? -fValue : fValue; } /* * Harder cases: The sum of digits plus exponent is greater than what we * think we can do with one error. * * Start by weeding out obviously out-of-range results, then convert to * double and go to common hard-case code. */ if (decExponent > singleMaxDecimalExponent + 1) { /* * Lets face it. This is going to be Infinity. Cut to the chase. */ return (isNegative) ? Float.NEGATIVE_INFINITY : Float.POSITIVE_INFINITY; } else if (decExponent < singleMinDecimalExponent - 1) { /* * Lets face it. This is going to be zero. Cut to the chase. */ return (isNegative) ? -0.0f : 0.0f; } /* * Here, we do 'way too much work, but throwing away our partial * results, and going and doing the whole thing as double, then throwing * away half the bits that computes when we convert back to float. * * The alternative is to reproduce the whole multiple-precision * algorithm for float precision, or to try to parameterize it for * common usage. The former will take about 400 lines of code, and the * latter I tried without success. Thus we use the following solution * here. */ mustSetRoundDir = true; double dValue = doubleValue(); return stickyRound(dValue); } /* * All the positive powers of 10 that can be represented exactly in * double/float. */ private static final double small10pow[] = { 1.0e0, 1.0e1, 1.0e2, 1.0e3, 1.0e4, 1.0e5, 1.0e6, 1.0e7, 1.0e8, 1.0e9, 1.0e10, 1.0e11, 1.0e12, 1.0e13, 1.0e14, 1.0e15, 1.0e16, 1.0e17, 1.0e18, 1.0e19, 1.0e20, 1.0e21, 1.0e22 }; private static final float singleSmall10pow[] = { 1.0e0f, 1.0e1f, 1.0e2f, 1.0e3f, 1.0e4f, 1.0e5f, 1.0e6f, 1.0e7f, 1.0e8f, 1.0e9f, 1.0e10f }; private static final double big10pow[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; private static final double tiny10pow[] = { 1e-16, 1e-32, 1e-64, 1e-128, 1e-256 }; private static final int maxSmallTen = small10pow.length - 1; private static final int singleMaxSmallTen = singleSmall10pow.length - 1; private static final int small5pow[] = { 1, 5, 5 * 5, 5 * 5 * 5, 5 * 5 * 5 * 5, 5 * 5 * 5 * 5 * 5, 5 * 5 * 5 * 5 * 5 * 5, 5 * 5 * 5 * 5 * 5 * 5 * 5, 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 }; private static final long long5pow[] = { 1L, 5L, 5L * 5, 5L * 5 * 5, 5L * 5 * 5 * 5, 5L * 5 * 5 * 5 * 5, 5L * 5 * 5 * 5 * 5 * 5, 5L * 5 * 5 * 5 * 5 * 5 * 5, 5L * 5 * 5 * 5 * 5 * 5 * 5 * 5, 5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, 5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, 5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, 5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, 5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, 5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, 5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, 5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, 5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, 5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, 5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, 5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, 5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, 5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, 5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, 5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, 5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, 5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, }; // approximately ceil( log2( long5pow[i] ) ) private static final int n5bits[] = { 0, 3, 5, 7, 10, 12, 14, 17, 19, 21, 24, 26, 28, 31, 33, 35, 38, 40, 42, 45, 47, 49, 52, 54, 56, 59, 61, }; private static final char infinity[] = { 'I', 'n', 'f', 'i', 'n', 'i', 't', 'y' }; private static final char notANumber[] = { 'N', 'a', 'N' }; private static final char zero[] = { '0', '0', '0', '0', '0', '0', '0', '0' }; } /* * A really, really simple bigint package tailored to the needs of floating base * conversion. */ class FDBigInt { int nWords; // number of words used int data[]; // value: data[0] is least significant /* public */FDBigInt(int v) { nWords = 1; data = new int[1]; data[0] = v; } /* public */FDBigInt(long v) { data = new int[2]; data[0] = (int) v; data[1] = (int) (v >>> 32); nWords = (data[1] == 0) ? 1 : 2; } /* public */FDBigInt(FDBigInt other) { data = new int[nWords = other.nWords]; // JVM.unchecked_int_arraycopy( other.data, 0, data, 0, nWords ); System.arraycopy(other.data, 0, data, 0, nWords); } private FDBigInt(int[] d, int n) { data = d; nWords = n; } /* public */FDBigInt(long seed, char digit[], int nd0, int nd) { int n = (nd + 8) / 9; // estimate size needed. if (n < 2) n = 2; data = new int[n]; // allocate enough space data[0] = (int) seed; // starting value data[1] = (int) (seed >>> 32); nWords = (data[1] == 0) ? 1 : 2; int i = nd0; int limit = nd - 5; // slurp digits 5 at a time. int v; while (i < limit) { int ilim = i + 5; v = (int) digit[i++] - (int) '0'; while (i < ilim) { v = 10 * v + (int) digit[i++] - (int) '0'; } multaddMe(100000, v); // ... where 100000 is 10^5. } int factor = 1; v = 0; while (i < nd) { v = 10 * v + (int) digit[i++] - (int) '0'; factor *= 10; } if (factor != 1) { multaddMe(factor, v); } } /* * Left shift by c bits. Shifts this in place. */ public void lshiftMe(int c) throws IllegalArgumentException { if (c <= 0) { if (c == 0) return; // silly. else { throw new IllegalArgumentException( /* #ifdef VERBOSE_EXCEPTIONS */ // / skipped "negative shift count" /* #endif */ ); } } int wordcount = c >> 5; int bitcount = c & 0x1f; int anticount = 32 - bitcount; int t[] = data; int s[] = data; if (nWords + wordcount + 1 > t.length) { // reallocate. t = new int[nWords + wordcount + 1]; } int target = nWords + wordcount; int src = nWords - 1; if (bitcount == 0) { // special solution, since an anticount of 32 won't go! // JVM.unchecked_int_arraycopy( s, 0, t, wordcount, nWords ); System.arraycopy(s, 0, t, wordcount, nWords); target = wordcount - 1; } else { t[target--] = s[src] >>> anticount; while (src >= 1) { t[target--] = (s[src] << bitcount) | (s[--src] >>> anticount); } t[target--] = s[src] << bitcount; } while (target >= 0) { t[target--] = 0; } data = t; nWords += wordcount + 1; // may have constructed high-order word of 0. // if so, trim it while (nWords > 1 && data[nWords - 1] == 0) nWords--; } /* * normalize this number by shifting until the MSB of the number is at * 0x08000000. This is in preparation for quoRemIteration, below. The idea * is that, to make division easier, we want the divisor to be "normalized" * -- usually this means shifting the MSB into the high words sign bit. But * because we know that the quotient will be 0 < q < 10, we would like to * arrange that the dividend not span up into another word of precision. * (This needs to be explained more clearly!) */ public int normalizeMe() throws IllegalArgumentException { int src; int wordcount = 0; int bitcount = 0; int v = 0; for (src = nWords - 1; src >= 0 && (v = data[src]) == 0; src--) { wordcount += 1; } if (src < 0) { // oops. Value is zero. Cannot normalize it! throw new IllegalArgumentException( /* #ifdef VERBOSE_EXCEPTIONS */ // / skipped "zero value" /* #endif */ ); } /* * In most cases, we assume that wordcount is zero. This only makes * sense, as we try not to maintain any high-order words full of zeros. * In fact, if there are zeros, we will simply SHORTEN our number at * this point. Watch closely... */ nWords -= wordcount; /* * Compute how far left we have to shift v s.t. its highest- order bit * is in the right place. Then call lshiftMe to do the work. */ if ((v & 0xf0000000) != 0) { // will have to shift up into the next word. // too bad. bitcount = 32; while ((v & 0xf0000000) != 0) { v >>>= 1; bitcount--; } } else { while (v <= 0x000fffff) { // solution: byte-at-a-time shifting v <<= 8; bitcount += 8; } while (v <= 0x07ffffff) { v <<= 1; bitcount += 1; } } if (bitcount != 0) lshiftMe(bitcount); return bitcount; } /* * Multiply a FDBigInt by an int. Result is a new FDBigInt. */ public FDBigInt mult(int iv) { long v = iv; int r[]; long p; // guess adequate size of r. r = new int[(v * ((long) data[nWords - 1] & 0xffffffffL) > 0xfffffffL) ? nWords + 1 : nWords]; p = 0L; for (int i = 0; i < nWords; i++) { p += v * ((long) data[i] & 0xffffffffL); r[i] = (int) p; p >>>= 32; } if (p == 0L) { return new FDBigInt(r, nWords); } else { r[nWords] = (int) p; return new FDBigInt(r, nWords + 1); } } /* * Multiply a FDBigInt by an int and add another int. Result is computed in * place. Hope it fits! */ public void multaddMe(int iv, int addend) { long v = iv; long p; // unroll 0th iteration, doing addition. p = v * ((long) data[0] & 0xffffffffL) + ((long) addend & 0xffffffffL); data[0] = (int) p; p >>>= 32; for (int i = 1; i < nWords; i++) { p += v * ((long) data[i] & 0xffffffffL); data[i] = (int) p; p >>>= 32; } if (p != 0L) { data[nWords] = (int) p; // will fail noisily if illegal! nWords++; } } /* * Multiply a FDBigInt by another FDBigInt. Result is a new FDBigInt. */ public FDBigInt mult(FDBigInt other) { // crudely guess adequate size for r int r[] = new int[nWords + other.nWords]; int i; // I think I am promised zeros... for (i = 0; i < this.nWords; i++) { long v = (long) this.data[i] & 0xffffffffL; // UNSIGNED CONVERSION long p = 0L; int j; for (j = 0; j < other.nWords; j++) { p += ((long) r[i + j] & 0xffffffffL) + v * ((long) other.data[j] & 0xffffffffL); // UNSIGNED // CONVERSIONS // ALL 'ROUND. r[i + j] = (int) p; p >>>= 32; } r[i + j] = (int) p; } // compute how much of r we actually needed for all that. for (i = r.length - 1; i > 0; i--) if (r[i] != 0) break; return new FDBigInt(r, i + 1); } /* * Add one FDBigInt to another. Return a FDBigInt */ public FDBigInt add(FDBigInt other) { int i; int a[], b[]; int n, m; long c = 0L; // arrange such that a.nWords >= b.nWords; // n = a.nWords, m = b.nWords if (this.nWords >= other.nWords) { a = this.data; n = this.nWords; b = other.data; m = other.nWords; } else { a = other.data; n = other.nWords; b = this.data; m = this.nWords; } int r[] = new int[n]; for (i = 0; i < n; i++) { c += (long) a[i] & 0xffffffffL; if (i < m) { c += (long) b[i] & 0xffffffffL; } r[i] = (int) c; c >>= 32; // signed shift. } if (c != 0L) { // oops -- carry out -- need longer result. int s[] = new int[r.length + 1]; // JVM.unchecked_int_arraycopy( r, 0, s, 0, r.length ); System.arraycopy(r, 0, s, 0, r.length); s[i++] = (int) c; return new FDBigInt(s, i); } return new FDBigInt(r, i); } /* * Subtract one FDBigInt from another. Return a FDBigInt Assert that the * result is positive. */ public FDBigInt sub(FDBigInt other) { int r[] = new int[this.nWords]; int i; int n = this.nWords; int m = other.nWords; int nzeros = 0; long c = 0L; for (i = 0; i < n; i++) { c += (long) this.data[i] & 0xffffffffL; if (i < m) { c -= (long) other.data[i] & 0xffffffffL; } if ((r[i] = (int) c) == 0) nzeros++; else nzeros = 0; c >>= 32; // signed shift. } if (c != 0L) { throw new RuntimeException( /* #ifdef VERBOSE_EXCEPTIONS */ // / skipped "Assertion botch: borrow out of subtract" /* #endif */ ); } while (i < m) if (other.data[i++] != 0) { throw new RuntimeException( /* #ifdef VERBOSE_EXCEPTIONS */ // / skipped "Assertion botch: negative result of subtract" /* #endif */ ); } return new FDBigInt(r, n - nzeros); } /* * Compare FDBigInt with another FDBigInt. Return an integer >0: this > * other 0: this == other <0: this < other */ public int cmp(FDBigInt other) { int i; if (this.nWords > other.nWords) { // if any of my high-order words is non-zero, // then the answer is evident int j = other.nWords - 1; for (i = this.nWords - 1; i > j; i--) if (this.data[i] != 0) return 1; } else if (this.nWords < other.nWords) { // if any of other's high-order words is non-zero, // then the answer is evident int j = this.nWords - 1; for (i = other.nWords - 1; i > j; i--) if (other.data[i] != 0) return -1; } else { i = this.nWords - 1; } for (; i > 0; i--) if (this.data[i] != other.data[i]) break; // careful! want unsigned compare! // use brute force here. int a = this.data[i]; int b = other.data[i]; if (a < 0) { // a is really big, unsigned if (b < 0) { return a - b; // both big, negative } else { return 1; // b not big, answer is obvious; } } else { // a is not really big if (b < 0) { // but b is really big return -1; } else { return a - b; } } } /* * Compute q = (int)( this / S ) this = 10 * ( this mod S ) Return q. This * is the iteration step of digit development for output. We assume that S * has been normalized, as above, and that "this" has been lshift'ed * accordingly. Also assume, of course, that the result, q, can be expressed * as an integer, 0 <= q < 10. */ public int quoRemIteration(FDBigInt S) throws IllegalArgumentException { // ensure that this and S have the same number of // digits. If S is properly normalized and q < 10 then // this must be so. if (nWords != S.nWords) { throw new IllegalArgumentException( /* #ifdef VERBOSE_EXCEPTIONS */ // / skipped "disparate values" /* #endif */ ); } // estimate q the obvious way. We will usually be // right. If not, then we're only off by a little and // will re-add. int n = nWords - 1; long q = ((long) data[n] & 0xffffffffL) / (long) S.data[n]; long diff = 0L; for (int i = 0; i <= n; i++) { diff += ((long) data[i] & 0xffffffffL) - q * ((long) S.data[i] & 0xffffffffL); data[i] = (int) diff; diff >>= 32; // N.B. SIGNED shift. } if (diff != 0L) { // q is too big. // add S back in until this turns +. This should // not be very many times! long sum = 0L; while (sum == 0L) { sum = 0L; for (int i = 0; i <= n; i++) { sum += ((long) data[i] & 0xffffffffL) + ((long) S.data[i] & 0xffffffffL); data[i] = (int) sum; sum >>= 32; // Signed or unsigned, answer is 0 or 1 } /* * Originally the following line read * "if ( sum !=0 && sum != -1 )" but that would be wrong, * because of the treatment of the two values as entirely * unsigned, it would be impossible for a carry-out to be * interpreted as -1 -- it would have to be a single-bit * carry-out, or +1. */ if (sum != 0 && sum != 1) { throw new RuntimeException( /* #ifdef VERBOSE_EXCEPTIONS */ // / skipped // "Assertion botch: "+sum+" carry out of division correction" /* #endif */ ); } q -= 1; } } // finally, we can multiply this by 10. // it cannot overflow, right, as the high-order word has // at least 4 high-order zeros! long p = 0L; for (int i = 0; i <= n; i++) { p += 10 * ((long) data[i] & 0xffffffffL); data[i] = (int) p; p >>= 32; // SIGNED shift. } if (p != 0L) { throw new RuntimeException( /* #ifdef VERBOSE_EXCEPTIONS */ // / skipped "Assertion botch: carry out of *10" /* #endif */ ); } return (int) q; } public long longValue() { // if this can be represented as a long, // return the value int i; for (i = this.nWords - 1; i > 1; i--) { if (data[i] != 0) { throw new RuntimeException( /* #ifdef VERBOSE_EXCEPTIONS */ // / skipped "Assertion botch: value too big" /* #endif */ ); } } switch (i) { case 1: if (data[1] < 0) { throw new RuntimeException( /* #ifdef VERBOSE_EXCEPTIONS */ // / skipped "Assertion botch: value too big" /* #endif */ ); } return ((long) (data[1]) << 32) | ((long) data[0] & 0xffffffffL); case 0: return ((long) data[0] & 0xffffffffL); default: throw new RuntimeException( /* #ifdef VERBOSE_EXCEPTIONS */ // / skipped "Assertion botch: longValue confused" /* #endif */ ); } } public String toString() { StringBuffer r = new StringBuffer(30); r.append('['); int i = Math.min(nWords - 1, data.length - 1); if (nWords > data.length) { r.append("(" + data.length + "<" + nWords + "!)"); } for (; i > 0; i--) { r.append(Integer.toHexString(data[i])); r.append((char) ' '); } r.append(Integer.toHexString(data[0])); r.append((char) ']'); return new String(r); } }