/* * Copyright (C) 2011 The Guava Authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.google.common.math; import static com.google.common.base.Preconditions.checkArgument; import static java.lang.Double.MAX_EXPONENT; import static java.lang.Double.MIN_EXPONENT; import static java.lang.Double.POSITIVE_INFINITY; import static java.lang.Double.doubleToRawLongBits; import static java.lang.Double.isNaN; import static java.lang.Double.longBitsToDouble; import static java.lang.Math.getExponent; import java.math.BigInteger; /** * Utilities for {@code double} primitives. * * @author Louis Wasserman */ final class DoubleUtils { private DoubleUtils() { } static double nextDown(double d) { return -Math.nextUp(-d); } // The mask for the significand, according to the {@link // Double#doubleToRawLongBits(double)} spec. static final long SIGNIFICAND_MASK = 0x000fffffffffffffL; // The mask for the exponent, according to the {@link // Double#doubleToRawLongBits(double)} spec. static final long EXPONENT_MASK = 0x7ff0000000000000L; // The mask for the sign, according to the {@link // Double#doubleToRawLongBits(double)} spec. static final long SIGN_MASK = 0x8000000000000000L; static final int SIGNIFICAND_BITS = 52; static final int EXPONENT_BIAS = 1023; /** * The implicit 1 bit that is omitted in significands of normal doubles. */ static final long IMPLICIT_BIT = SIGNIFICAND_MASK + 1; static long getSignificand(double d) { checkArgument(isFinite(d), "not a normal value"); int exponent = getExponent(d); long bits = doubleToRawLongBits(d); bits &= SIGNIFICAND_MASK; return (exponent == MIN_EXPONENT - 1) ? bits << 1 : bits | IMPLICIT_BIT; } static boolean isFinite(double d) { return getExponent(d) <= MAX_EXPONENT; } static boolean isNormal(double d) { return getExponent(d) >= MIN_EXPONENT; } /* * Returns x scaled by a power of 2 such that it is in the range [1, 2). Assumes x is positive, * normal, and finite. */ static double scaleNormalize(double x) { long significand = doubleToRawLongBits(x) & SIGNIFICAND_MASK; return longBitsToDouble(significand | ONE_BITS); } static double bigToDouble(BigInteger x) { // This is an extremely fast implementation of BigInteger.doubleValue(). JDK patch pending. BigInteger absX = x.abs(); int exponent = absX.bitLength() - 1; // exponent == floor(log2(abs(x))) if (exponent < Long.SIZE - 1) { return x.longValue(); } else if (exponent > MAX_EXPONENT) { return x.signum() * POSITIVE_INFINITY; } /* * We need the top SIGNIFICAND_BITS + 1 bits, including the "implicit" one bit. To make * rounding easier, we pick out the top SIGNIFICAND_BITS + 2 bits, so we have one to help us * round up or down. twiceSignifFloor will contain the top SIGNIFICAND_BITS + 2 bits, and * signifFloor the top SIGNIFICAND_BITS + 1. * * It helps to consider the real number signif = absX * 2^(SIGNIFICAND_BITS - exponent). */ int shift = exponent - SIGNIFICAND_BITS - 1; long twiceSignifFloor = absX.shiftRight(shift).longValue(); long signifFloor = twiceSignifFloor >> 1; signifFloor &= SIGNIFICAND_MASK; // remove the implied bit /* * We round up if either the fractional part of signif is strictly greater than 0.5 (which is * true if the 0.5 bit is set and any lower bit is set), or if the fractional part of signif is * >= 0.5 and signifFloor is odd (which is true if both the 0.5 bit and the 1 bit are set). */ boolean increment = (twiceSignifFloor & 1) != 0 && ((signifFloor & 1) != 0 || absX.getLowestSetBit() < shift); long signifRounded = increment ? signifFloor + 1 : signifFloor; long bits = (long) ((exponent + EXPONENT_BIAS)) << SIGNIFICAND_BITS; bits += signifRounded; /* * If signifRounded == 2^53, we'd need to set all of the significand bits to zero and add 1 to * the exponent. This is exactly the behavior we get from just adding signifRounded to bits * directly. If the exponent is MAX_DOUBLE_EXPONENT, we round up (correctly) to * Double.POSITIVE_INFINITY. */ bits |= x.signum() & SIGN_MASK; return longBitsToDouble(bits); } /** * Returns its argument if it is non-negative, zero if it is negative. */ static double ensureNonNegative(double value) { checkArgument(!isNaN(value)); if (value > 0.0) { return value; } else { return 0.0; } } private static final long ONE_BITS = doubleToRawLongBits(1.0); }