/* * Copyright (C) 2007 The Guava Authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.google.common.collect; import static com.google.common.base.Preconditions.checkPositionIndex; import static com.google.common.base.Preconditions.checkState; import static com.google.common.collect.CollectPreconditions.checkRemove; import static java.util.Collections.unmodifiableList; import com.google.common.annotations.GwtCompatible; import com.google.common.annotations.GwtIncompatible; import java.io.IOException; import java.io.ObjectInputStream; import java.io.ObjectOutputStream; import java.io.Serializable; import java.util.AbstractSequentialList; import java.util.Collection; import java.util.ConcurrentModificationException; import java.util.HashMap; import java.util.Iterator; import java.util.List; import java.util.ListIterator; import java.util.Map; import java.util.Map.Entry; import java.util.NoSuchElementException; import java.util.Set; import javax.annotation.Nullable; /** * An implementation of {@code ListMultimap} that supports deterministic * iteration order for both keys and values. The iteration order is preserved * across non-distinct key values. For example, for the following multimap * definition: <pre> {@code * * Multimap<K, V> multimap = LinkedListMultimap.create(); * multimap.put(key1, foo); * multimap.put(key2, bar); * multimap.put(key1, baz);}</pre> * * ... the iteration order for {@link #keys()} is {@code [key1, key2, key1]}, * and similarly for {@link #entries()}. Unlike {@link LinkedHashMultimap}, the * iteration order is kept consistent between keys, entries and values. For * example, calling: <pre> {@code * * map.remove(key1, foo);}</pre> * * <p>changes the entries iteration order to {@code [key2=bar, key1=baz]} and the * key iteration order to {@code [key2, key1]}. The {@link #entries()} iterator * returns mutable map entries, and {@link #replaceValues} attempts to preserve * iteration order as much as possible. * * <p>The collections returned by {@link #keySet()} and {@link #asMap} iterate * through the keys in the order they were first added to the multimap. * Similarly, {@link #get}, {@link #removeAll}, and {@link #replaceValues} * return collections that iterate through the values in the order they were * added. The collections generated by {@link #entries()}, {@link #keys()}, and * {@link #values} iterate across the key-value mappings in the order they were * added to the multimap. * * <p>The {@link #values()} and {@link #entries()} methods both return a * {@code List}, instead of the {@code Collection} specified by the {@link * ListMultimap} interface. * * <p>The methods {@link #get}, {@link #keySet()}, {@link #keys()}, * {@link #values}, {@link #entries()}, and {@link #asMap} return collections * that are views of the multimap. If the multimap is modified while an * iteration over any of those collections is in progress, except through the * iterator's methods, the results of the iteration are undefined. * * <p>Keys and values may be null. All optional multimap methods are supported, * and all returned views are modifiable. * * <p>This class is not threadsafe when any concurrent operations update the * multimap. Concurrent read operations will work correctly. To allow concurrent * update operations, wrap your multimap with a call to {@link * Multimaps#synchronizedListMultimap}. * * <p>See the Guava User Guide article on <a href= * "http://code.google.com/p/guava-libraries/wiki/NewCollectionTypesExplained#Multimap"> * {@code Multimap}</a>. * * @author Mike Bostock * @since 2.0 (imported from Google Collections Library) */ @GwtCompatible(serializable = true, emulated = true) public class LinkedListMultimap<K, V> extends AbstractMultimap<K, V> implements ListMultimap<K, V>, Serializable { /* * Order is maintained using a linked list containing all key-value pairs. In * addition, a series of disjoint linked lists of "siblings", each containing * the values for a specific key, is used to implement {@link * ValueForKeyIterator} in constant time. */ private static final class Node<K, V> extends AbstractMapEntry<K, V> { final K key; V value; Node<K, V> next; // the next node (with any key) Node<K, V> previous; // the previous node (with any key) Node<K, V> nextSibling; // the next node with the same key Node<K, V> previousSibling; // the previous node with the same key Node(@Nullable K key, @Nullable V value) { this.key = key; this.value = value; } @Override public K getKey() { return key; } @Override public V getValue() { return value; } @Override public V setValue(@Nullable V newValue) { V result = value; this.value = newValue; return result; } } private static class KeyList<K, V> { Node<K, V> head; Node<K, V> tail; int count; KeyList(Node<K, V> firstNode) { this.head = firstNode; this.tail = firstNode; firstNode.previousSibling = null; firstNode.nextSibling = null; this.count = 1; } } private transient Node<K, V> head; // the head for all keys private transient Node<K, V> tail; // the tail for all keys private transient Map<K, KeyList<K, V>> keyToKeyList; private transient int size; /* * Tracks modifications to keyToKeyList so that addition or removal of keys invalidates * preexisting iterators. This does *not* track simple additions and removals of values * that are not the first to be added or last to be removed for their key. */ private transient int modCount; /** * Creates a new, empty {@code LinkedListMultimap} with the default initial * capacity. */ public static <K, V> LinkedListMultimap<K, V> create() { return new LinkedListMultimap<K, V>(); } /** * Constructs an empty {@code LinkedListMultimap} with enough capacity to hold * the specified number of keys without rehashing. * * @param expectedKeys the expected number of distinct keys * @throws IllegalArgumentException if {@code expectedKeys} is negative */ public static <K, V> LinkedListMultimap<K, V> create(int expectedKeys) { return new LinkedListMultimap<K, V>(expectedKeys); } /** * Constructs a {@code LinkedListMultimap} with the same mappings as the * specified {@code Multimap}. The new multimap has the same * {@link Multimap#entries()} iteration order as the input multimap. * * @param multimap the multimap whose contents are copied to this multimap */ public static <K, V> LinkedListMultimap<K, V> create( Multimap<? extends K, ? extends V> multimap) { return new LinkedListMultimap<K, V>(multimap); } LinkedListMultimap() { keyToKeyList = Maps.newHashMap(); } private LinkedListMultimap(int expectedKeys) { keyToKeyList = new HashMap<K, KeyList<K, V>>(expectedKeys); } private LinkedListMultimap(Multimap<? extends K, ? extends V> multimap) { this(multimap.keySet().size()); putAll(multimap); } /** * Adds a new node for the specified key-value pair before the specified * {@code nextSibling} element, or at the end of the list if {@code * nextSibling} is null. Note: if {@code nextSibling} is specified, it MUST be * for an node for the same {@code key}! */ private Node<K, V> addNode( @Nullable K key, @Nullable V value, @Nullable Node<K, V> nextSibling) { Node<K, V> node = new Node<K, V>(key, value); if (head == null) { // empty list head = tail = node; keyToKeyList.put(key, new KeyList<K, V>(node)); modCount++; } else if (nextSibling == null) { // non-empty list, add to tail tail.next = node; node.previous = tail; tail = node; KeyList<K, V> keyList = keyToKeyList.get(key); if (keyList == null) { keyToKeyList.put(key, keyList = new KeyList<K, V>(node)); modCount++; } else { keyList.count++; Node<K, V> keyTail = keyList.tail; keyTail.nextSibling = node; node.previousSibling = keyTail; keyList.tail = node; } } else { // non-empty list, insert before nextSibling KeyList<K, V> keyList = keyToKeyList.get(key); keyList.count++; node.previous = nextSibling.previous; node.previousSibling = nextSibling.previousSibling; node.next = nextSibling; node.nextSibling = nextSibling; if (nextSibling.previousSibling == null) { // nextSibling was key head keyToKeyList.get(key).head = node; } else { nextSibling.previousSibling.nextSibling = node; } if (nextSibling.previous == null) { // nextSibling was head head = node; } else { nextSibling.previous.next = node; } nextSibling.previous = node; nextSibling.previousSibling = node; } size++; return node; } /** * Removes the specified node from the linked list. This method is only * intended to be used from the {@code Iterator} classes. See also {@link * LinkedListMultimap#removeAllNodes(Object)}. */ private void removeNode(Node<K, V> node) { if (node.previous != null) { node.previous.next = node.next; } else { // node was head head = node.next; } if (node.next != null) { node.next.previous = node.previous; } else { // node was tail tail = node.previous; } if (node.previousSibling == null && node.nextSibling == null) { KeyList<K, V> keyList = keyToKeyList.remove(node.key); keyList.count = 0; modCount++; } else { KeyList<K, V> keyList = keyToKeyList.get(node.key); keyList.count--; if (node.previousSibling == null) { keyList.head = node.nextSibling; } else { node.previousSibling.nextSibling = node.nextSibling; } if (node.nextSibling == null) { keyList.tail = node.previousSibling; } else { node.nextSibling.previousSibling = node.previousSibling; } } size--; } /** Removes all nodes for the specified key. */ private void removeAllNodes(@Nullable Object key) { Iterators.clear(new ValueForKeyIterator(key)); } /** Helper method for verifying that an iterator element is present. */ private static void checkElement(@Nullable Object node) { if (node == null) { throw new NoSuchElementException(); } } /** An {@code Iterator} over all nodes. */ private class NodeIterator implements ListIterator<Entry<K, V>> { int nextIndex; Node<K, V> next; Node<K, V> current; Node<K, V> previous; int expectedModCount = modCount; NodeIterator(int index) { int size = size(); checkPositionIndex(index, size); if (index >= (size / 2)) { previous = tail; nextIndex = size; while (index++ < size) { previous(); } } else { next = head; while (index-- > 0) { next(); } } current = null; } private void checkForConcurrentModification() { if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } } @Override public boolean hasNext() { checkForConcurrentModification(); return next != null; } @Override public Node<K, V> next() { checkForConcurrentModification(); checkElement(next); previous = current = next; next = next.next; nextIndex++; return current; } @Override public void remove() { checkForConcurrentModification(); checkRemove(current != null); if (current != next) { // after call to next() previous = current.previous; nextIndex--; } else { // after call to previous() next = current.next; } removeNode(current); current = null; expectedModCount = modCount; } @Override public boolean hasPrevious() { checkForConcurrentModification(); return previous != null; } @Override public Node<K, V> previous() { checkForConcurrentModification(); checkElement(previous); next = current = previous; previous = previous.previous; nextIndex--; return current; } @Override public int nextIndex() { return nextIndex; } @Override public int previousIndex() { return nextIndex - 1; } @Override public void set(Entry<K, V> e) { throw new UnsupportedOperationException(); } @Override public void add(Entry<K, V> e) { throw new UnsupportedOperationException(); } void setValue(V value) { checkState(current != null); current.value = value; } } /** An {@code Iterator} over distinct keys in key head order. */ private class DistinctKeyIterator implements Iterator<K> { final Set<K> seenKeys = Sets.<K>newHashSetWithExpectedSize(keySet().size()); Node<K, V> next = head; Node<K, V> current; int expectedModCount = modCount; private void checkForConcurrentModification() { if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } } @Override public boolean hasNext() { checkForConcurrentModification(); return next != null; } @Override public K next() { checkForConcurrentModification(); checkElement(next); current = next; seenKeys.add(current.key); do { // skip ahead to next unseen key next = next.next; } while ((next != null) && !seenKeys.add(next.key)); return current.key; } @Override public void remove() { checkForConcurrentModification(); checkRemove(current != null); removeAllNodes(current.key); current = null; expectedModCount = modCount; } } /** A {@code ListIterator} over values for a specified key. */ private class ValueForKeyIterator implements ListIterator<V> { final Object key; int nextIndex; Node<K, V> next; Node<K, V> current; Node<K, V> previous; /** Constructs a new iterator over all values for the specified key. */ ValueForKeyIterator(@Nullable Object key) { this.key = key; KeyList<K, V> keyList = keyToKeyList.get(key); next = (keyList == null) ? null : keyList.head; } /** * Constructs a new iterator over all values for the specified key starting * at the specified index. This constructor is optimized so that it starts * at either the head or the tail, depending on which is closer to the * specified index. This allows adds to the tail to be done in constant * time. * * @throws IndexOutOfBoundsException if index is invalid */ public ValueForKeyIterator(@Nullable Object key, int index) { KeyList<K, V> keyList = keyToKeyList.get(key); int size = (keyList == null) ? 0 : keyList.count; checkPositionIndex(index, size); if (index >= (size / 2)) { previous = (keyList == null) ? null : keyList.tail; nextIndex = size; while (index++ < size) { previous(); } } else { next = (keyList == null) ? null : keyList.head; while (index-- > 0) { next(); } } this.key = key; current = null; } @Override public boolean hasNext() { return next != null; } @Override public V next() { checkElement(next); previous = current = next; next = next.nextSibling; nextIndex++; return current.value; } @Override public boolean hasPrevious() { return previous != null; } @Override public V previous() { checkElement(previous); next = current = previous; previous = previous.previousSibling; nextIndex--; return current.value; } @Override public int nextIndex() { return nextIndex; } @Override public int previousIndex() { return nextIndex - 1; } @Override public void remove() { checkRemove(current != null); if (current != next) { // after call to next() previous = current.previousSibling; nextIndex--; } else { // after call to previous() next = current.nextSibling; } removeNode(current); current = null; } @Override public void set(V value) { checkState(current != null); current.value = value; } @Override @SuppressWarnings("unchecked") public void add(V value) { previous = addNode((K) key, value, next); nextIndex++; current = null; } } // Query Operations @Override public int size() { return size; } @Override public boolean isEmpty() { return head == null; } @Override public boolean containsKey(@Nullable Object key) { return keyToKeyList.containsKey(key); } @Override public boolean containsValue(@Nullable Object value) { return values().contains(value); } // Modification Operations /** * Stores a key-value pair in the multimap. * * @param key key to store in the multimap * @param value value to store in the multimap * @return {@code true} always */ @Override public boolean put(@Nullable K key, @Nullable V value) { addNode(key, value, null); return true; } // Bulk Operations /** * {@inheritDoc} * * <p>If any entries for the specified {@code key} already exist in the * multimap, their values are changed in-place without affecting the iteration * order. * * <p>The returned list is immutable and implements * {@link java.util.RandomAccess}. */ @Override public List<V> replaceValues(@Nullable K key, Iterable<? extends V> values) { List<V> oldValues = getCopy(key); ListIterator<V> keyValues = new ValueForKeyIterator(key); Iterator<? extends V> newValues = values.iterator(); // Replace existing values, if any. while (keyValues.hasNext() && newValues.hasNext()) { keyValues.next(); keyValues.set(newValues.next()); } // Remove remaining old values, if any. while (keyValues.hasNext()) { keyValues.next(); keyValues.remove(); } // Add remaining new values, if any. while (newValues.hasNext()) { keyValues.add(newValues.next()); } return oldValues; } private List<V> getCopy(@Nullable Object key) { return unmodifiableList(Lists.newArrayList(new ValueForKeyIterator(key))); } /** * {@inheritDoc} * * <p>The returned list is immutable and implements * {@link java.util.RandomAccess}. */ @Override public List<V> removeAll(@Nullable Object key) { List<V> oldValues = getCopy(key); removeAllNodes(key); return oldValues; } @Override public void clear() { head = null; tail = null; keyToKeyList.clear(); size = 0; modCount++; } // Views /** * {@inheritDoc} * * <p>If the multimap is modified while an iteration over the list is in * progress (except through the iterator's own {@code add}, {@code set} or * {@code remove} operations) the results of the iteration are undefined. * * <p>The returned list is not serializable and does not have random access. */ @Override public List<V> get(final @Nullable K key) { return new AbstractSequentialList<V>() { @Override public int size() { KeyList<K, V> keyList = keyToKeyList.get(key); return (keyList == null) ? 0 : keyList.count; } @Override public ListIterator<V> listIterator(int index) { return new ValueForKeyIterator(key, index); } }; } @Override Set<K> createKeySet() { return new Sets.ImprovedAbstractSet<K>() { @Override public int size() { return keyToKeyList.size(); } @Override public Iterator<K> iterator() { return new DistinctKeyIterator(); } @Override public boolean contains(Object key) { // for performance return containsKey(key); } @Override public boolean remove(Object o) { // for performance return !LinkedListMultimap.this.removeAll(o).isEmpty(); } }; } /** * {@inheritDoc} * * <p>The iterator generated by the returned collection traverses the values * in the order they were added to the multimap. Because the values may have * duplicates and follow the insertion ordering, this method returns a {@link * List}, instead of the {@link Collection} specified in the {@link * ListMultimap} interface. */ @Override public List<V> values() { return (List<V>) super.values(); } @Override List<V> createValues() { return new AbstractSequentialList<V>() { @Override public int size() { return size; } @Override public ListIterator<V> listIterator(int index) { final NodeIterator nodeItr = new NodeIterator(index); return new TransformedListIterator<Entry<K, V>, V>(nodeItr) { @Override V transform(Entry<K, V> entry) { return entry.getValue(); } @Override public void set(V value) { nodeItr.setValue(value); } }; } }; } /** * {@inheritDoc} * * <p>The iterator generated by the returned collection traverses the entries * in the order they were added to the multimap. Because the entries may have * duplicates and follow the insertion ordering, this method returns a {@link * List}, instead of the {@link Collection} specified in the {@link * ListMultimap} interface. * * <p>An entry's {@link Entry#getKey} method always returns the same key, * regardless of what happens subsequently. As long as the corresponding * key-value mapping is not removed from the multimap, {@link Entry#getValue} * returns the value from the multimap, which may change over time, and {@link * Entry#setValue} modifies that value. Removing the mapping from the * multimap does not alter the value returned by {@code getValue()}, though a * subsequent {@code setValue()} call won't update the multimap but will lead * to a revised value being returned by {@code getValue()}. */ @Override public List<Entry<K, V>> entries() { return (List<Entry<K, V>>) super.entries(); } @Override List<Entry<K, V>> createEntries() { return new AbstractSequentialList<Entry<K, V>>() { @Override public int size() { return size; } @Override public ListIterator<Entry<K, V>> listIterator(int index) { return new NodeIterator(index); } }; } @Override Iterator<Entry<K, V>> entryIterator() { throw new AssertionError("should never be called"); } @Override Map<K, Collection<V>> createAsMap() { return new Multimaps.AsMap<K, V>(this); } /** * @serialData the number of distinct keys, and then for each distinct key: * the first key, the number of values for that key, and the key's values, * followed by successive keys and values from the entries() ordering */ @GwtIncompatible("java.io.ObjectOutputStream") private void writeObject(ObjectOutputStream stream) throws IOException { stream.defaultWriteObject(); stream.writeInt(size()); for (Entry<K, V> entry : entries()) { stream.writeObject(entry.getKey()); stream.writeObject(entry.getValue()); } } @GwtIncompatible("java.io.ObjectInputStream") private void readObject(ObjectInputStream stream) throws IOException, ClassNotFoundException { stream.defaultReadObject(); keyToKeyList = Maps.newLinkedHashMap(); int size = stream.readInt(); for (int i = 0; i < size; i++) { @SuppressWarnings("unchecked") // reading data stored by writeObject K key = (K) stream.readObject(); @SuppressWarnings("unchecked") // reading data stored by writeObject V value = (V) stream.readObject(); put(key, value); } } @GwtIncompatible("java serialization not supported") private static final long serialVersionUID = 0; }