/* * Copyright (C) 2007 The Guava Authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.google.common.collect; import static com.google.common.base.Preconditions.checkArgument; import static com.google.common.base.Preconditions.checkNotNull; import static com.google.common.collect.CollectPreconditions.checkRemove; import com.google.common.annotations.Beta; import com.google.common.annotations.GwtCompatible; import com.google.common.annotations.GwtIncompatible; import com.google.common.base.Function; import com.google.common.base.Optional; import com.google.common.base.Predicate; import java.util.Collection; import java.util.Collections; import java.util.Comparator; import java.util.Iterator; import java.util.List; import java.util.NoSuchElementException; import java.util.Queue; import java.util.RandomAccess; import java.util.Set; import javax.annotation.Nullable; /** * This class contains static utility methods that operate on or return objects * of type {@code Iterable}. Except as noted, each method has a corresponding * {@link Iterator}-based method in the {@link Iterators} class. * * <p><i>Performance notes:</i> Unless otherwise noted, all of the iterables * produced in this class are <i>lazy</i>, which means that their iterators * only advance the backing iteration when absolutely necessary. * * <p>See the Guava User Guide article on <a href= * "http://code.google.com/p/guava-libraries/wiki/CollectionUtilitiesExplained#Iterables"> * {@code Iterables}</a>. * * @author Kevin Bourrillion * @author Jared Levy * @since 2.0 (imported from Google Collections Library) */ @GwtCompatible(emulated = true) public final class Iterables { private Iterables() {} /** Returns an unmodifiable view of {@code iterable}. */ public static <T> Iterable<T> unmodifiableIterable( final Iterable<T> iterable) { checkNotNull(iterable); if (iterable instanceof UnmodifiableIterable || iterable instanceof ImmutableCollection) { return iterable; } return new UnmodifiableIterable<T>(iterable); } /** * Simply returns its argument. * * @deprecated no need to use this * @since 10.0 */ @Deprecated public static <E> Iterable<E> unmodifiableIterable( ImmutableCollection<E> iterable) { return checkNotNull(iterable); } private static final class UnmodifiableIterable<T> extends FluentIterable<T> { private final Iterable<T> iterable; private UnmodifiableIterable(Iterable<T> iterable) { this.iterable = iterable; } @Override public Iterator<T> iterator() { return Iterators.unmodifiableIterator(iterable.iterator()); } @Override public String toString() { return iterable.toString(); } // no equals and hashCode; it would break the contract! } /** * Returns the number of elements in {@code iterable}. */ public static int size(Iterable<?> iterable) { return (iterable instanceof Collection) ? ((Collection<?>) iterable).size() : Iterators.size(iterable.iterator()); } /** * Returns {@code true} if {@code iterable} contains any object for which {@code equals(element)} * is true. */ public static boolean contains(Iterable<?> iterable, @Nullable Object element) { if (iterable instanceof Collection) { Collection<?> collection = (Collection<?>) iterable; return Collections2.safeContains(collection, element); } return Iterators.contains(iterable.iterator(), element); } /** * Removes, from an iterable, every element that belongs to the provided * collection. * * <p>This method calls {@link Collection#removeAll} if {@code iterable} is a * collection, and {@link Iterators#removeAll} otherwise. * * @param removeFrom the iterable to (potentially) remove elements from * @param elementsToRemove the elements to remove * @return {@code true} if any element was removed from {@code iterable} */ public static boolean removeAll( Iterable<?> removeFrom, Collection<?> elementsToRemove) { return (removeFrom instanceof Collection) ? ((Collection<?>) removeFrom).removeAll(checkNotNull(elementsToRemove)) : Iterators.removeAll(removeFrom.iterator(), elementsToRemove); } /** * Removes, from an iterable, every element that does not belong to the * provided collection. * * <p>This method calls {@link Collection#retainAll} if {@code iterable} is a * collection, and {@link Iterators#retainAll} otherwise. * * @param removeFrom the iterable to (potentially) remove elements from * @param elementsToRetain the elements to retain * @return {@code true} if any element was removed from {@code iterable} */ public static boolean retainAll( Iterable<?> removeFrom, Collection<?> elementsToRetain) { return (removeFrom instanceof Collection) ? ((Collection<?>) removeFrom).retainAll(checkNotNull(elementsToRetain)) : Iterators.retainAll(removeFrom.iterator(), elementsToRetain); } /** * Removes, from an iterable, every element that satisfies the provided * predicate. * * @param removeFrom the iterable to (potentially) remove elements from * @param predicate a predicate that determines whether an element should * be removed * @return {@code true} if any elements were removed from the iterable * * @throws UnsupportedOperationException if the iterable does not support * {@code remove()}. * @since 2.0 */ public static <T> boolean removeIf( Iterable<T> removeFrom, Predicate<? super T> predicate) { if (removeFrom instanceof RandomAccess && removeFrom instanceof List) { return removeIfFromRandomAccessList( (List<T>) removeFrom, checkNotNull(predicate)); } return Iterators.removeIf(removeFrom.iterator(), predicate); } private static <T> boolean removeIfFromRandomAccessList( List<T> list, Predicate<? super T> predicate) { // Note: Not all random access lists support set() so we need to deal with // those that don't and attempt the slower remove() based solution. int from = 0; int to = 0; for (; from < list.size(); from++) { T element = list.get(from); if (!predicate.apply(element)) { if (from > to) { try { list.set(to, element); } catch (UnsupportedOperationException e) { slowRemoveIfForRemainingElements(list, predicate, to, from); return true; } } to++; } } // Clear the tail of any remaining items list.subList(to, list.size()).clear(); return from != to; } private static <T> void slowRemoveIfForRemainingElements(List<T> list, Predicate<? super T> predicate, int to, int from) { // Here we know that: // * (to < from) and that both are valid indices. // * Everything with (index < to) should be kept. // * Everything with (to <= index < from) should be removed. // * The element with (index == from) should be kept. // * Everything with (index > from) has not been checked yet. // Check from the end of the list backwards (minimize expected cost of // moving elements when remove() is called). Stop before 'from' because // we already know that should be kept. for (int n = list.size() - 1; n > from; n--) { if (predicate.apply(list.get(n))) { list.remove(n); } } // And now remove everything in the range [to, from) (going backwards). for (int n = from - 1; n >= to; n--) { list.remove(n); } } /** * Removes and returns the first matching element, or returns {@code null} if there is none. */ @Nullable static <T> T removeFirstMatching(Iterable<T> removeFrom, Predicate<? super T> predicate) { checkNotNull(predicate); Iterator<T> iterator = removeFrom.iterator(); while (iterator.hasNext()) { T next = iterator.next(); if (predicate.apply(next)) { iterator.remove(); return next; } } return null; } /** * Determines whether two iterables contain equal elements in the same order. * More specifically, this method returns {@code true} if {@code iterable1} * and {@code iterable2} contain the same number of elements and every element * of {@code iterable1} is equal to the corresponding element of * {@code iterable2}. */ public static boolean elementsEqual( Iterable<?> iterable1, Iterable<?> iterable2) { if (iterable1 instanceof Collection && iterable2 instanceof Collection) { Collection<?> collection1 = (Collection<?>) iterable1; Collection<?> collection2 = (Collection<?>) iterable2; if (collection1.size() != collection2.size()) { return false; } } return Iterators.elementsEqual(iterable1.iterator(), iterable2.iterator()); } /** * Returns a string representation of {@code iterable}, with the format {@code * [e1, e2, ..., en]} (that is, identical to {@link java.util.Arrays * Arrays}{@code .toString(Iterables.toArray(iterable))}). Note that for * <i>most</i> implementations of {@link Collection}, {@code * collection.toString()} also gives the same result, but that behavior is not * generally guaranteed. */ public static String toString(Iterable<?> iterable) { return Iterators.toString(iterable.iterator()); } /** * Returns the single element contained in {@code iterable}. * * @throws NoSuchElementException if the iterable is empty * @throws IllegalArgumentException if the iterable contains multiple * elements */ public static <T> T getOnlyElement(Iterable<T> iterable) { return Iterators.getOnlyElement(iterable.iterator()); } /** * Returns the single element contained in {@code iterable}, or {@code * defaultValue} if the iterable is empty. * * @throws IllegalArgumentException if the iterator contains multiple * elements */ @Nullable public static <T> T getOnlyElement( Iterable<? extends T> iterable, @Nullable T defaultValue) { return Iterators.getOnlyElement(iterable.iterator(), defaultValue); } /** * Copies an iterable's elements into an array. * * @param iterable the iterable to copy * @param type the type of the elements * @return a newly-allocated array into which all the elements of the iterable * have been copied */ @GwtIncompatible("Array.newInstance(Class, int)") public static <T> T[] toArray(Iterable<? extends T> iterable, Class<T> type) { Collection<? extends T> collection = toCollection(iterable); T[] array = ObjectArrays.newArray(type, collection.size()); return collection.toArray(array); } /** * Copies an iterable's elements into an array. * * @param iterable the iterable to copy * @return a newly-allocated array into which all the elements of the iterable * have been copied */ static Object[] toArray(Iterable<?> iterable) { return toCollection(iterable).toArray(); } /** * Converts an iterable into a collection. If the iterable is already a * collection, it is returned. Otherwise, an {@link java.util.ArrayList} is * created with the contents of the iterable in the same iteration order. */ private static <E> Collection<E> toCollection(Iterable<E> iterable) { return (iterable instanceof Collection) ? (Collection<E>) iterable : Lists.newArrayList(iterable.iterator()); } /** * Adds all elements in {@code iterable} to {@code collection}. * * @return {@code true} if {@code collection} was modified as a result of this * operation. */ public static <T> boolean addAll( Collection<T> addTo, Iterable<? extends T> elementsToAdd) { if (elementsToAdd instanceof Collection) { Collection<? extends T> c = Collections2.cast(elementsToAdd); return addTo.addAll(c); } return Iterators.addAll(addTo, checkNotNull(elementsToAdd).iterator()); } /** * Returns the number of elements in the specified iterable that equal the * specified object. This implementation avoids a full iteration when the * iterable is a {@link Multiset} or {@link Set}. * * @see Collections#frequency */ public static int frequency(Iterable<?> iterable, @Nullable Object element) { if ((iterable instanceof Multiset)) { return ((Multiset<?>) iterable).count(element); } else if ((iterable instanceof Set)) { return ((Set<?>) iterable).contains(element) ? 1 : 0; } return Iterators.frequency(iterable.iterator(), element); } /** * Returns an iterable whose iterators cycle indefinitely over the elements of * {@code iterable}. * * <p>That iterator supports {@code remove()} if {@code iterable.iterator()} * does. After {@code remove()} is called, subsequent cycles omit the removed * element, which is no longer in {@code iterable}. The iterator's * {@code hasNext()} method returns {@code true} until {@code iterable} is * empty. * * <p><b>Warning:</b> Typical uses of the resulting iterator may produce an * infinite loop. You should use an explicit {@code break} or be certain that * you will eventually remove all the elements. * * <p>To cycle over the iterable {@code n} times, use the following: * {@code Iterables.concat(Collections.nCopies(n, iterable))} */ public static <T> Iterable<T> cycle(final Iterable<T> iterable) { checkNotNull(iterable); return new FluentIterable<T>() { @Override public Iterator<T> iterator() { return Iterators.cycle(iterable); } @Override public String toString() { return iterable.toString() + " (cycled)"; } }; } /** * Returns an iterable whose iterators cycle indefinitely over the provided * elements. * * <p>After {@code remove} is invoked on a generated iterator, the removed * element will no longer appear in either that iterator or any other iterator * created from the same source iterable. That is, this method behaves exactly * as {@code Iterables.cycle(Lists.newArrayList(elements))}. The iterator's * {@code hasNext} method returns {@code true} until all of the original * elements have been removed. * * <p><b>Warning:</b> Typical uses of the resulting iterator may produce an * infinite loop. You should use an explicit {@code break} or be certain that * you will eventually remove all the elements. * * <p>To cycle over the elements {@code n} times, use the following: * {@code Iterables.concat(Collections.nCopies(n, Arrays.asList(elements)))} */ public static <T> Iterable<T> cycle(T... elements) { return cycle(Lists.newArrayList(elements)); } /** * Combines two iterables into a single iterable. The returned iterable has an * iterator that traverses the elements in {@code a}, followed by the elements * in {@code b}. The source iterators are not polled until necessary. * * <p>The returned iterable's iterator supports {@code remove()} when the * corresponding input iterator supports it. */ public static <T> Iterable<T> concat( Iterable<? extends T> a, Iterable<? extends T> b) { return concat(ImmutableList.of(a, b)); } /** * Combines three iterables into a single iterable. The returned iterable has * an iterator that traverses the elements in {@code a}, followed by the * elements in {@code b}, followed by the elements in {@code c}. The source * iterators are not polled until necessary. * * <p>The returned iterable's iterator supports {@code remove()} when the * corresponding input iterator supports it. */ public static <T> Iterable<T> concat(Iterable<? extends T> a, Iterable<? extends T> b, Iterable<? extends T> c) { return concat(ImmutableList.of(a, b, c)); } /** * Combines four iterables into a single iterable. The returned iterable has * an iterator that traverses the elements in {@code a}, followed by the * elements in {@code b}, followed by the elements in {@code c}, followed by * the elements in {@code d}. The source iterators are not polled until * necessary. * * <p>The returned iterable's iterator supports {@code remove()} when the * corresponding input iterator supports it. */ public static <T> Iterable<T> concat(Iterable<? extends T> a, Iterable<? extends T> b, Iterable<? extends T> c, Iterable<? extends T> d) { return concat(ImmutableList.of(a, b, c, d)); } /** * Combines multiple iterables into a single iterable. The returned iterable * has an iterator that traverses the elements of each iterable in * {@code inputs}. The input iterators are not polled until necessary. * * <p>The returned iterable's iterator supports {@code remove()} when the * corresponding input iterator supports it. * * @throws NullPointerException if any of the provided iterables is null */ public static <T> Iterable<T> concat(Iterable<? extends T>... inputs) { return concat(ImmutableList.copyOf(inputs)); } /** * Combines multiple iterables into a single iterable. The returned iterable * has an iterator that traverses the elements of each iterable in * {@code inputs}. The input iterators are not polled until necessary. * * <p>The returned iterable's iterator supports {@code remove()} when the * corresponding input iterator supports it. The methods of the returned * iterable may throw {@code NullPointerException} if any of the input * iterators is null. */ public static <T> Iterable<T> concat( final Iterable<? extends Iterable<? extends T>> inputs) { checkNotNull(inputs); return new FluentIterable<T>() { @Override public Iterator<T> iterator() { return Iterators.concat(iterators(inputs)); } }; } /** * Returns an iterator over the iterators of the given iterables. */ private static <T> Iterator<Iterator<? extends T>> iterators( Iterable<? extends Iterable<? extends T>> iterables) { return new TransformedIterator<Iterable<? extends T>, Iterator<? extends T>>( iterables.iterator()) { @Override Iterator<? extends T> transform(Iterable<? extends T> from) { return from.iterator(); } }; } /** * Divides an iterable into unmodifiable sublists of the given size (the final * iterable may be smaller). For example, partitioning an iterable containing * {@code [a, b, c, d, e]} with a partition size of 3 yields {@code * [[a, b, c], [d, e]]} -- an outer iterable containing two inner lists of * three and two elements, all in the original order. * * <p>Iterators returned by the returned iterable do not support the {@link * Iterator#remove()} method. The returned lists implement {@link * RandomAccess}, whether or not the input list does. * * <p><b>Note:</b> if {@code iterable} is a {@link List}, use {@link * Lists#partition(List, int)} instead. * * @param iterable the iterable to return a partitioned view of * @param size the desired size of each partition (the last may be smaller) * @return an iterable of unmodifiable lists containing the elements of {@code * iterable} divided into partitions * @throws IllegalArgumentException if {@code size} is nonpositive */ public static <T> Iterable<List<T>> partition( final Iterable<T> iterable, final int size) { checkNotNull(iterable); checkArgument(size > 0); return new FluentIterable<List<T>>() { @Override public Iterator<List<T>> iterator() { return Iterators.partition(iterable.iterator(), size); } }; } /** * Divides an iterable into unmodifiable sublists of the given size, padding * the final iterable with null values if necessary. For example, partitioning * an iterable containing {@code [a, b, c, d, e]} with a partition size of 3 * yields {@code [[a, b, c], [d, e, null]]} -- an outer iterable containing * two inner lists of three elements each, all in the original order. * * <p>Iterators returned by the returned iterable do not support the {@link * Iterator#remove()} method. * * @param iterable the iterable to return a partitioned view of * @param size the desired size of each partition * @return an iterable of unmodifiable lists containing the elements of {@code * iterable} divided into partitions (the final iterable may have * trailing null elements) * @throws IllegalArgumentException if {@code size} is nonpositive */ public static <T> Iterable<List<T>> paddedPartition( final Iterable<T> iterable, final int size) { checkNotNull(iterable); checkArgument(size > 0); return new FluentIterable<List<T>>() { @Override public Iterator<List<T>> iterator() { return Iterators.paddedPartition(iterable.iterator(), size); } }; } /** * Returns the elements of {@code unfiltered} that satisfy a predicate. The * resulting iterable's iterator does not support {@code remove()}. */ public static <T> Iterable<T> filter( final Iterable<T> unfiltered, final Predicate<? super T> predicate) { checkNotNull(unfiltered); checkNotNull(predicate); return new FluentIterable<T>() { @Override public Iterator<T> iterator() { return Iterators.filter(unfiltered.iterator(), predicate); } }; } /** * Returns all instances of class {@code type} in {@code unfiltered}. The * returned iterable has elements whose class is {@code type} or a subclass of * {@code type}. The returned iterable's iterator does not support * {@code remove()}. * * @param unfiltered an iterable containing objects of any type * @param type the type of elements desired * @return an unmodifiable iterable containing all elements of the original * iterable that were of the requested type */ @GwtIncompatible("Class.isInstance") public static <T> Iterable<T> filter( final Iterable<?> unfiltered, final Class<T> type) { checkNotNull(unfiltered); checkNotNull(type); return new FluentIterable<T>() { @Override public Iterator<T> iterator() { return Iterators.filter(unfiltered.iterator(), type); } }; } /** * Returns {@code true} if any element in {@code iterable} satisfies the predicate. */ public static <T> boolean any( Iterable<T> iterable, Predicate<? super T> predicate) { return Iterators.any(iterable.iterator(), predicate); } /** * Returns {@code true} if every element in {@code iterable} satisfies the * predicate. If {@code iterable} is empty, {@code true} is returned. */ public static <T> boolean all( Iterable<T> iterable, Predicate<? super T> predicate) { return Iterators.all(iterable.iterator(), predicate); } /** * Returns the first element in {@code iterable} that satisfies the given * predicate; use this method only when such an element is known to exist. If * it is possible that <i>no</i> element will match, use {@link #tryFind} or * {@link #find(Iterable, Predicate, Object)} instead. * * @throws NoSuchElementException if no element in {@code iterable} matches * the given predicate */ public static <T> T find(Iterable<T> iterable, Predicate<? super T> predicate) { return Iterators.find(iterable.iterator(), predicate); } /** * Returns the first element in {@code iterable} that satisfies the given * predicate, or {@code defaultValue} if none found. Note that this can * usually be handled more naturally using {@code * tryFind(iterable, predicate).or(defaultValue)}. * * @since 7.0 */ @Nullable public static <T> T find(Iterable<? extends T> iterable, Predicate<? super T> predicate, @Nullable T defaultValue) { return Iterators.find(iterable.iterator(), predicate, defaultValue); } /** * Returns an {@link Optional} containing the first element in {@code * iterable} that satisfies the given predicate, if such an element exists. * * <p><b>Warning:</b> avoid using a {@code predicate} that matches {@code * null}. If {@code null} is matched in {@code iterable}, a * NullPointerException will be thrown. * * @since 11.0 */ public static <T> Optional<T> tryFind(Iterable<T> iterable, Predicate<? super T> predicate) { return Iterators.tryFind(iterable.iterator(), predicate); } /** * Returns the index in {@code iterable} of the first element that satisfies * the provided {@code predicate}, or {@code -1} if the Iterable has no such * elements. * * <p>More formally, returns the lowest index {@code i} such that * {@code predicate.apply(Iterables.get(iterable, i))} returns {@code true}, * or {@code -1} if there is no such index. * * @since 2.0 */ public static <T> int indexOf( Iterable<T> iterable, Predicate<? super T> predicate) { return Iterators.indexOf(iterable.iterator(), predicate); } /** * Returns an iterable that applies {@code function} to each element of {@code * fromIterable}. * * <p>The returned iterable's iterator supports {@code remove()} if the * provided iterator does. After a successful {@code remove()} call, * {@code fromIterable} no longer contains the corresponding element. * * <p>If the input {@code Iterable} is known to be a {@code List} or other * {@code Collection}, consider {@link Lists#transform} and {@link * Collections2#transform}. */ public static <F, T> Iterable<T> transform(final Iterable<F> fromIterable, final Function<? super F, ? extends T> function) { checkNotNull(fromIterable); checkNotNull(function); return new FluentIterable<T>() { @Override public Iterator<T> iterator() { return Iterators.transform(fromIterable.iterator(), function); } }; } /** * Returns the element at the specified position in an iterable. * * @param position position of the element to return * @return the element at the specified position in {@code iterable} * @throws IndexOutOfBoundsException if {@code position} is negative or * greater than or equal to the size of {@code iterable} */ public static <T> T get(Iterable<T> iterable, int position) { checkNotNull(iterable); return (iterable instanceof List) ? ((List<T>) iterable).get(position) : Iterators.get(iterable.iterator(), position); } /** * Returns the element at the specified position in an iterable or a default * value otherwise. * * @param position position of the element to return * @param defaultValue the default value to return if {@code position} is * greater than or equal to the size of the iterable * @return the element at the specified position in {@code iterable} or * {@code defaultValue} if {@code iterable} contains fewer than * {@code position + 1} elements. * @throws IndexOutOfBoundsException if {@code position} is negative * @since 4.0 */ @Nullable public static <T> T get(Iterable<? extends T> iterable, int position, @Nullable T defaultValue) { checkNotNull(iterable); Iterators.checkNonnegative(position); if (iterable instanceof List) { List<? extends T> list = Lists.cast(iterable); return (position < list.size()) ? list.get(position) : defaultValue; } else { Iterator<? extends T> iterator = iterable.iterator(); Iterators.advance(iterator, position); return Iterators.getNext(iterator, defaultValue); } } /** * Returns the first element in {@code iterable} or {@code defaultValue} if * the iterable is empty. The {@link Iterators} analog to this method is * {@link Iterators#getNext}. * * <p>If no default value is desired (and the caller instead wants a * {@link NoSuchElementException} to be thrown), it is recommended that * {@code iterable.iterator().next()} is used instead. * * @param defaultValue the default value to return if the iterable is empty * @return the first element of {@code iterable} or the default value * @since 7.0 */ @Nullable public static <T> T getFirst(Iterable<? extends T> iterable, @Nullable T defaultValue) { return Iterators.getNext(iterable.iterator(), defaultValue); } /** * Returns the last element of {@code iterable}. * * @return the last element of {@code iterable} * @throws NoSuchElementException if the iterable is empty */ public static <T> T getLast(Iterable<T> iterable) { // TODO(kevinb): Support a concurrently modified collection? if (iterable instanceof List) { List<T> list = (List<T>) iterable; if (list.isEmpty()) { throw new NoSuchElementException(); } return getLastInNonemptyList(list); } return Iterators.getLast(iterable.iterator()); } /** * Returns the last element of {@code iterable} or {@code defaultValue} if * the iterable is empty. * * @param defaultValue the value to return if {@code iterable} is empty * @return the last element of {@code iterable} or the default value * @since 3.0 */ @Nullable public static <T> T getLast(Iterable<? extends T> iterable, @Nullable T defaultValue) { if (iterable instanceof Collection) { Collection<? extends T> c = Collections2.cast(iterable); if (c.isEmpty()) { return defaultValue; } else if (iterable instanceof List) { return getLastInNonemptyList(Lists.cast(iterable)); } } return Iterators.getLast(iterable.iterator(), defaultValue); } private static <T> T getLastInNonemptyList(List<T> list) { return list.get(list.size() - 1); } /** * Returns a view of {@code iterable} that skips its first * {@code numberToSkip} elements. If {@code iterable} contains fewer than * {@code numberToSkip} elements, the returned iterable skips all of its * elements. * * <p>Modifications to the underlying {@link Iterable} before a call to * {@code iterator()} are reflected in the returned iterator. That is, the * iterator skips the first {@code numberToSkip} elements that exist when the * {@code Iterator} is created, not when {@code skip()} is called. * * <p>The returned iterable's iterator supports {@code remove()} if the * iterator of the underlying iterable supports it. Note that it is * <i>not</i> possible to delete the last skipped element by immediately * calling {@code remove()} on that iterator, as the {@code Iterator} * contract states that a call to {@code remove()} before a call to * {@code next()} will throw an {@link IllegalStateException}. * * @since 3.0 */ public static <T> Iterable<T> skip(final Iterable<T> iterable, final int numberToSkip) { checkNotNull(iterable); checkArgument(numberToSkip >= 0, "number to skip cannot be negative"); if (iterable instanceof List) { final List<T> list = (List<T>) iterable; return new FluentIterable<T>() { @Override public Iterator<T> iterator() { // TODO(kevinb): Support a concurrently modified collection? int toSkip = Math.min(list.size(), numberToSkip); return list.subList(toSkip, list.size()).iterator(); } }; } return new FluentIterable<T>() { @Override public Iterator<T> iterator() { final Iterator<T> iterator = iterable.iterator(); Iterators.advance(iterator, numberToSkip); /* * We can't just return the iterator because an immediate call to its * remove() method would remove one of the skipped elements instead of * throwing an IllegalStateException. */ return new Iterator<T>() { boolean atStart = true; @Override public boolean hasNext() { return iterator.hasNext(); } @Override public T next() { T result = iterator.next(); atStart = false; // not called if next() fails return result; } @Override public void remove() { checkRemove(!atStart); iterator.remove(); } }; } }; } /** * Creates an iterable with the first {@code limitSize} elements of the given * iterable. If the original iterable does not contain that many elements, the * returned iterable will have the same behavior as the original iterable. The * returned iterable's iterator supports {@code remove()} if the original * iterator does. * * @param iterable the iterable to limit * @param limitSize the maximum number of elements in the returned iterable * @throws IllegalArgumentException if {@code limitSize} is negative * @since 3.0 */ public static <T> Iterable<T> limit( final Iterable<T> iterable, final int limitSize) { checkNotNull(iterable); checkArgument(limitSize >= 0, "limit is negative"); return new FluentIterable<T>() { @Override public Iterator<T> iterator() { return Iterators.limit(iterable.iterator(), limitSize); } }; } /** * Returns a view of the supplied iterable that wraps each generated * {@link Iterator} through {@link Iterators#consumingIterator(Iterator)}. * * <p>Note: If {@code iterable} is a {@link Queue}, the returned iterable will * get entries from {@link Queue#remove()} since {@link Queue}'s iteration * order is undefined. Calling {@link Iterator#hasNext()} on a generated * iterator from the returned iterable may cause an item to be immediately * dequeued for return on a subsequent call to {@link Iterator#next()}. * * @param iterable the iterable to wrap * @return a view of the supplied iterable that wraps each generated iterator * through {@link Iterators#consumingIterator(Iterator)}; for queues, * an iterable that generates iterators that return and consume the * queue's elements in queue order * * @see Iterators#consumingIterator(Iterator) * @since 2.0 */ public static <T> Iterable<T> consumingIterable(final Iterable<T> iterable) { if (iterable instanceof Queue) { return new FluentIterable<T>() { @Override public Iterator<T> iterator() { return new ConsumingQueueIterator<T>((Queue<T>) iterable); } @Override public String toString() { return "Iterables.consumingIterable(...)"; } }; } checkNotNull(iterable); return new FluentIterable<T>() { @Override public Iterator<T> iterator() { return Iterators.consumingIterator(iterable.iterator()); } @Override public String toString() { return "Iterables.consumingIterable(...)"; } }; } private static class ConsumingQueueIterator<T> extends AbstractIterator<T> { private final Queue<T> queue; private ConsumingQueueIterator(Queue<T> queue) { this.queue = queue; } @Override public T computeNext() { try { return queue.remove(); } catch (NoSuchElementException e) { return endOfData(); } } } // Methods only in Iterables, not in Iterators /** * Determines if the given iterable contains no elements. * * <p>There is no precise {@link Iterator} equivalent to this method, since * one can only ask an iterator whether it has any elements <i>remaining</i> * (which one does using {@link Iterator#hasNext}). * * @return {@code true} if the iterable contains no elements */ public static boolean isEmpty(Iterable<?> iterable) { if (iterable instanceof Collection) { return ((Collection<?>) iterable).isEmpty(); } return !iterable.iterator().hasNext(); } /** * Returns an iterable over the merged contents of all given * {@code iterables}. Equivalent entries will not be de-duplicated. * * <p>Callers must ensure that the source {@code iterables} are in * non-descending order as this method does not sort its input. * * <p>For any equivalent elements across all {@code iterables}, it is * undefined which element is returned first. * * @since 11.0 */ @Beta public static <T> Iterable<T> mergeSorted( final Iterable<? extends Iterable<? extends T>> iterables, final Comparator<? super T> comparator) { checkNotNull(iterables, "iterables"); checkNotNull(comparator, "comparator"); Iterable<T> iterable = new FluentIterable<T>() { @Override public Iterator<T> iterator() { return Iterators.mergeSorted( Iterables.transform(iterables, Iterables.<T>toIterator()), comparator); } }; return new UnmodifiableIterable<T>(iterable); } // TODO(user): Is this the best place for this? Move to fluent functions? // Useful as a public method? private static <T> Function<Iterable<? extends T>, Iterator<? extends T>> toIterator() { return new Function<Iterable<? extends T>, Iterator<? extends T>>() { @Override public Iterator<? extends T> apply(Iterable<? extends T> iterable) { return iterable.iterator(); } }; } }