/* * Copyright (C) 2007 The Guava Authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.google.common.collect; import static com.google.common.base.Preconditions.checkArgument; import static com.google.common.base.Preconditions.checkNotNull; import static com.google.common.base.Preconditions.checkState; import static com.google.common.base.Predicates.equalTo; import static com.google.common.base.Predicates.in; import static com.google.common.base.Predicates.instanceOf; import static com.google.common.base.Predicates.not; import static com.google.common.collect.CollectPreconditions.checkRemove; import com.google.common.annotations.Beta; import com.google.common.annotations.GwtCompatible; import com.google.common.annotations.GwtIncompatible; import com.google.common.base.Function; import com.google.common.base.Objects; import com.google.common.base.Optional; import com.google.common.base.Preconditions; import com.google.common.base.Predicate; import java.util.Arrays; import java.util.Collection; import java.util.Collections; import java.util.Comparator; import java.util.Enumeration; import java.util.Iterator; import java.util.List; import java.util.ListIterator; import java.util.NoSuchElementException; import java.util.PriorityQueue; import java.util.Queue; import javax.annotation.Nullable; /** * This class contains static utility methods that operate on or return objects * of type {@link Iterator}. Except as noted, each method has a corresponding * {@link Iterable}-based method in the {@link Iterables} class. * * <p><i>Performance notes:</i> Unless otherwise noted, all of the iterators * produced in this class are <i>lazy</i>, which means that they only advance * the backing iteration when absolutely necessary. * * <p>See the Guava User Guide section on <a href= * "http://code.google.com/p/guava-libraries/wiki/CollectionUtilitiesExplained#Iterables"> * {@code Iterators}</a>. * * @author Kevin Bourrillion * @author Jared Levy * @since 2.0 (imported from Google Collections Library) */ @GwtCompatible(emulated = true) public final class Iterators { private Iterators() {} static final UnmodifiableListIterator<Object> EMPTY_LIST_ITERATOR = new UnmodifiableListIterator<Object>() { @Override public boolean hasNext() { return false; } @Override public Object next() { throw new NoSuchElementException(); } @Override public boolean hasPrevious() { return false; } @Override public Object previous() { throw new NoSuchElementException(); } @Override public int nextIndex() { return 0; } @Override public int previousIndex() { return -1; } }; /** * Returns the empty iterator. * * <p>The {@link Iterable} equivalent of this method is {@link * ImmutableSet#of()}. * * @deprecated Use {@code ImmutableSet.<T>of().iterator()} instead; or for * Java 7 or later, {@link Collections#emptyIterator}. This method is * scheduled for removal in May 2016. */ @Deprecated public static <T> UnmodifiableIterator<T> emptyIterator() { return emptyListIterator(); } /** * Returns the empty iterator. * * <p>The {@link Iterable} equivalent of this method is {@link * ImmutableSet#of()}. */ // Casting to any type is safe since there are no actual elements. @SuppressWarnings("unchecked") static <T> UnmodifiableListIterator<T> emptyListIterator() { return (UnmodifiableListIterator<T>) EMPTY_LIST_ITERATOR; } private static final Iterator<Object> EMPTY_MODIFIABLE_ITERATOR = new Iterator<Object>() { @Override public boolean hasNext() { return false; } @Override public Object next() { throw new NoSuchElementException(); } @Override public void remove() { checkRemove(false); } }; /** * Returns the empty {@code Iterator} that throws * {@link IllegalStateException} instead of * {@link UnsupportedOperationException} on a call to * {@link Iterator#remove()}. */ // Casting to any type is safe since there are no actual elements. @SuppressWarnings("unchecked") static <T> Iterator<T> emptyModifiableIterator() { return (Iterator<T>) EMPTY_MODIFIABLE_ITERATOR; } /** Returns an unmodifiable view of {@code iterator}. */ public static <T> UnmodifiableIterator<T> unmodifiableIterator( final Iterator<T> iterator) { checkNotNull(iterator); if (iterator instanceof UnmodifiableIterator) { return (UnmodifiableIterator<T>) iterator; } return new UnmodifiableIterator<T>() { @Override public boolean hasNext() { return iterator.hasNext(); } @Override public T next() { return iterator.next(); } }; } /** * Simply returns its argument. * * @deprecated no need to use this * @since 10.0 */ @Deprecated public static <T> UnmodifiableIterator<T> unmodifiableIterator( UnmodifiableIterator<T> iterator) { return checkNotNull(iterator); } /** * Returns the number of elements remaining in {@code iterator}. The iterator * will be left exhausted: its {@code hasNext()} method will return * {@code false}. */ public static int size(Iterator<?> iterator) { int count = 0; while (iterator.hasNext()) { iterator.next(); count++; } return count; } /** * Returns {@code true} if {@code iterator} contains {@code element}. */ public static boolean contains(Iterator<?> iterator, @Nullable Object element) { return any(iterator, equalTo(element)); } /** * Traverses an iterator and removes every element that belongs to the * provided collection. The iterator will be left exhausted: its * {@code hasNext()} method will return {@code false}. * * @param removeFrom the iterator to (potentially) remove elements from * @param elementsToRemove the elements to remove * @return {@code true} if any element was removed from {@code iterator} */ public static boolean removeAll( Iterator<?> removeFrom, Collection<?> elementsToRemove) { return removeIf(removeFrom, in(elementsToRemove)); } /** * Removes every element that satisfies the provided predicate from the * iterator. The iterator will be left exhausted: its {@code hasNext()} * method will return {@code false}. * * @param removeFrom the iterator to (potentially) remove elements from * @param predicate a predicate that determines whether an element should * be removed * @return {@code true} if any elements were removed from the iterator * @since 2.0 */ public static <T> boolean removeIf( Iterator<T> removeFrom, Predicate<? super T> predicate) { checkNotNull(predicate); boolean modified = false; while (removeFrom.hasNext()) { if (predicate.apply(removeFrom.next())) { removeFrom.remove(); modified = true; } } return modified; } /** * Traverses an iterator and removes every element that does not belong to the * provided collection. The iterator will be left exhausted: its * {@code hasNext()} method will return {@code false}. * * @param removeFrom the iterator to (potentially) remove elements from * @param elementsToRetain the elements to retain * @return {@code true} if any element was removed from {@code iterator} */ public static boolean retainAll( Iterator<?> removeFrom, Collection<?> elementsToRetain) { return removeIf(removeFrom, not(in(elementsToRetain))); } /** * Determines whether two iterators contain equal elements in the same order. * More specifically, this method returns {@code true} if {@code iterator1} * and {@code iterator2} contain the same number of elements and every element * of {@code iterator1} is equal to the corresponding element of * {@code iterator2}. * * <p>Note that this will modify the supplied iterators, since they will have * been advanced some number of elements forward. */ public static boolean elementsEqual( Iterator<?> iterator1, Iterator<?> iterator2) { while (iterator1.hasNext()) { if (!iterator2.hasNext()) { return false; } Object o1 = iterator1.next(); Object o2 = iterator2.next(); if (!Objects.equal(o1, o2)) { return false; } } return !iterator2.hasNext(); } /** * Returns a string representation of {@code iterator}, with the format * {@code [e1, e2, ..., en]}. The iterator will be left exhausted: its * {@code hasNext()} method will return {@code false}. */ public static String toString(Iterator<?> iterator) { return Collections2.STANDARD_JOINER .appendTo(new StringBuilder().append('['), iterator) .append(']') .toString(); } /** * Returns the single element contained in {@code iterator}. * * @throws NoSuchElementException if the iterator is empty * @throws IllegalArgumentException if the iterator contains multiple * elements. The state of the iterator is unspecified. */ public static <T> T getOnlyElement(Iterator<T> iterator) { T first = iterator.next(); if (!iterator.hasNext()) { return first; } StringBuilder sb = new StringBuilder(); sb.append("expected one element but was: <" + first); for (int i = 0; i < 4 && iterator.hasNext(); i++) { sb.append(", " + iterator.next()); } if (iterator.hasNext()) { sb.append(", ..."); } sb.append('>'); throw new IllegalArgumentException(sb.toString()); } /** * Returns the single element contained in {@code iterator}, or {@code * defaultValue} if the iterator is empty. * * @throws IllegalArgumentException if the iterator contains multiple * elements. The state of the iterator is unspecified. */ @Nullable public static <T> T getOnlyElement(Iterator<? extends T> iterator, @Nullable T defaultValue) { return iterator.hasNext() ? getOnlyElement(iterator) : defaultValue; } /** * Copies an iterator's elements into an array. The iterator will be left * exhausted: its {@code hasNext()} method will return {@code false}. * * @param iterator the iterator to copy * @param type the type of the elements * @return a newly-allocated array into which all the elements of the iterator * have been copied */ @GwtIncompatible("Array.newInstance(Class, int)") public static <T> T[] toArray( Iterator<? extends T> iterator, Class<T> type) { List<T> list = Lists.newArrayList(iterator); return Iterables.toArray(list, type); } /** * Adds all elements in {@code iterator} to {@code collection}. The iterator * will be left exhausted: its {@code hasNext()} method will return * {@code false}. * * @return {@code true} if {@code collection} was modified as a result of this * operation */ public static <T> boolean addAll( Collection<T> addTo, Iterator<? extends T> iterator) { checkNotNull(addTo); checkNotNull(iterator); boolean wasModified = false; while (iterator.hasNext()) { wasModified |= addTo.add(iterator.next()); } return wasModified; } /** * Returns the number of elements in the specified iterator that equal the * specified object. The iterator will be left exhausted: its * {@code hasNext()} method will return {@code false}. * * @see Collections#frequency */ public static int frequency(Iterator<?> iterator, @Nullable Object element) { return size(filter(iterator, equalTo(element))); } /** * Returns an iterator that cycles indefinitely over the elements of {@code * iterable}. * * <p>The returned iterator supports {@code remove()} if the provided iterator * does. After {@code remove()} is called, subsequent cycles omit the removed * element, which is no longer in {@code iterable}. The iterator's * {@code hasNext()} method returns {@code true} until {@code iterable} is * empty. * * <p><b>Warning:</b> Typical uses of the resulting iterator may produce an * infinite loop. You should use an explicit {@code break} or be certain that * you will eventually remove all the elements. */ public static <T> Iterator<T> cycle(final Iterable<T> iterable) { checkNotNull(iterable); return new Iterator<T>() { Iterator<T> iterator = emptyIterator(); Iterator<T> removeFrom; @Override public boolean hasNext() { if (!iterator.hasNext()) { iterator = iterable.iterator(); } return iterator.hasNext(); } @Override public T next() { if (!hasNext()) { throw new NoSuchElementException(); } removeFrom = iterator; return iterator.next(); } @Override public void remove() { checkRemove(removeFrom != null); removeFrom.remove(); removeFrom = null; } }; } /** * Returns an iterator that cycles indefinitely over the provided elements. * * <p>The returned iterator supports {@code remove()}. After {@code remove()} * is called, subsequent cycles omit the removed * element, but {@code elements} does not change. The iterator's * {@code hasNext()} method returns {@code true} until all of the original * elements have been removed. * * <p><b>Warning:</b> Typical uses of the resulting iterator may produce an * infinite loop. You should use an explicit {@code break} or be certain that * you will eventually remove all the elements. */ public static <T> Iterator<T> cycle(T... elements) { return cycle(Lists.newArrayList(elements)); } /** * Combines two iterators into a single iterator. The returned iterator * iterates across the elements in {@code a}, followed by the elements in * {@code b}. The source iterators are not polled until necessary. * * <p>The returned iterator supports {@code remove()} when the corresponding * input iterator supports it. * * <p><b>Note:</b> the current implementation is not suitable for nested * concatenated iterators, i.e. the following should be avoided when in a loop: * {@code iterator = Iterators.concat(iterator, suffix);}, since iteration over the * resulting iterator has a cubic complexity to the depth of the nesting. */ public static <T> Iterator<T> concat(Iterator<? extends T> a, Iterator<? extends T> b) { return concat(ImmutableList.of(a, b).iterator()); } /** * Combines three iterators into a single iterator. The returned iterator * iterates across the elements in {@code a}, followed by the elements in * {@code b}, followed by the elements in {@code c}. The source iterators * are not polled until necessary. * * <p>The returned iterator supports {@code remove()} when the corresponding * input iterator supports it. * * <p><b>Note:</b> the current implementation is not suitable for nested * concatenated iterators, i.e. the following should be avoided when in a loop: * {@code iterator = Iterators.concat(iterator, suffix);}, since iteration over the * resulting iterator has a cubic complexity to the depth of the nesting. */ public static <T> Iterator<T> concat(Iterator<? extends T> a, Iterator<? extends T> b, Iterator<? extends T> c) { return concat(ImmutableList.of(a, b, c).iterator()); } /** * Combines four iterators into a single iterator. The returned iterator * iterates across the elements in {@code a}, followed by the elements in * {@code b}, followed by the elements in {@code c}, followed by the elements * in {@code d}. The source iterators are not polled until necessary. * * <p>The returned iterator supports {@code remove()} when the corresponding * input iterator supports it. * * <p><b>Note:</b> the current implementation is not suitable for nested * concatenated iterators, i.e. the following should be avoided when in a loop: * {@code iterator = Iterators.concat(iterator, suffix);}, since iteration over the * resulting iterator has a cubic complexity to the depth of the nesting. */ public static <T> Iterator<T> concat(Iterator<? extends T> a, Iterator<? extends T> b, Iterator<? extends T> c, Iterator<? extends T> d) { return concat(ImmutableList.of(a, b, c, d).iterator()); } /** * Combines multiple iterators into a single iterator. The returned iterator * iterates across the elements of each iterator in {@code inputs}. The input * iterators are not polled until necessary. * * <p>The returned iterator supports {@code remove()} when the corresponding * input iterator supports it. * * <p><b>Note:</b> the current implementation is not suitable for nested * concatenated iterators, i.e. the following should be avoided when in a loop: * {@code iterator = Iterators.concat(iterator, suffix);}, since iteration over the * resulting iterator has a cubic complexity to the depth of the nesting. * * @throws NullPointerException if any of the provided iterators is null */ public static <T> Iterator<T> concat(Iterator<? extends T>... inputs) { return concat(ImmutableList.copyOf(inputs).iterator()); } /** * Combines multiple iterators into a single iterator. The returned iterator * iterates across the elements of each iterator in {@code inputs}. The input * iterators are not polled until necessary. * * <p>The returned iterator supports {@code remove()} when the corresponding * input iterator supports it. The methods of the returned iterator may throw * {@code NullPointerException} if any of the input iterators is null. * * <p><b>Note:</b> the current implementation is not suitable for nested * concatenated iterators, i.e. the following should be avoided when in a loop: * {@code iterator = Iterators.concat(iterator, suffix);}, since iteration over the * resulting iterator has a cubic complexity to the depth of the nesting. */ public static <T> Iterator<T> concat( final Iterator<? extends Iterator<? extends T>> inputs) { checkNotNull(inputs); return new Iterator<T>() { Iterator<? extends T> current = emptyIterator(); Iterator<? extends T> removeFrom; @Override public boolean hasNext() { // http://code.google.com/p/google-collections/issues/detail?id=151 // current.hasNext() might be relatively expensive, worth minimizing. boolean currentHasNext; // checkNotNull eager for GWT // note: it must be here & not where 'current' is assigned, // because otherwise we'll have called inputs.next() before throwing // the first NPE, and the next time around we'll call inputs.next() // again, incorrectly moving beyond the error. while (!(currentHasNext = checkNotNull(current).hasNext()) && inputs.hasNext()) { current = inputs.next(); } return currentHasNext; } @Override public T next() { if (!hasNext()) { throw new NoSuchElementException(); } removeFrom = current; return current.next(); } @Override public void remove() { checkRemove(removeFrom != null); removeFrom.remove(); removeFrom = null; } }; } /** * Divides an iterator into unmodifiable sublists of the given size (the final * list may be smaller). For example, partitioning an iterator containing * {@code [a, b, c, d, e]} with a partition size of 3 yields {@code * [[a, b, c], [d, e]]} -- an outer iterator containing two inner lists of * three and two elements, all in the original order. * * <p>The returned lists implement {@link java.util.RandomAccess}. * * @param iterator the iterator to return a partitioned view of * @param size the desired size of each partition (the last may be smaller) * @return an iterator of immutable lists containing the elements of {@code * iterator} divided into partitions * @throws IllegalArgumentException if {@code size} is nonpositive */ public static <T> UnmodifiableIterator<List<T>> partition( Iterator<T> iterator, int size) { return partitionImpl(iterator, size, false); } /** * Divides an iterator into unmodifiable sublists of the given size, padding * the final iterator with null values if necessary. For example, partitioning * an iterator containing {@code [a, b, c, d, e]} with a partition size of 3 * yields {@code [[a, b, c], [d, e, null]]} -- an outer iterator containing * two inner lists of three elements each, all in the original order. * * <p>The returned lists implement {@link java.util.RandomAccess}. * * @param iterator the iterator to return a partitioned view of * @param size the desired size of each partition * @return an iterator of immutable lists containing the elements of {@code * iterator} divided into partitions (the final iterable may have * trailing null elements) * @throws IllegalArgumentException if {@code size} is nonpositive */ public static <T> UnmodifiableIterator<List<T>> paddedPartition( Iterator<T> iterator, int size) { return partitionImpl(iterator, size, true); } private static <T> UnmodifiableIterator<List<T>> partitionImpl( final Iterator<T> iterator, final int size, final boolean pad) { checkNotNull(iterator); checkArgument(size > 0); return new UnmodifiableIterator<List<T>>() { @Override public boolean hasNext() { return iterator.hasNext(); } @Override public List<T> next() { if (!hasNext()) { throw new NoSuchElementException(); } Object[] array = new Object[size]; int count = 0; for (; count < size && iterator.hasNext(); count++) { array[count] = iterator.next(); } for (int i = count; i < size; i++) { array[i] = null; // for GWT } @SuppressWarnings("unchecked") // we only put Ts in it List<T> list = Collections.unmodifiableList( (List<T>) Arrays.asList(array)); return (pad || count == size) ? list : list.subList(0, count); } }; } /** * Returns the elements of {@code unfiltered} that satisfy a predicate. */ public static <T> UnmodifiableIterator<T> filter( final Iterator<T> unfiltered, final Predicate<? super T> predicate) { checkNotNull(unfiltered); checkNotNull(predicate); return new AbstractIterator<T>() { @Override protected T computeNext() { while (unfiltered.hasNext()) { T element = unfiltered.next(); if (predicate.apply(element)) { return element; } } return endOfData(); } }; } /** * Returns all instances of class {@code type} in {@code unfiltered}. The * returned iterator has elements whose class is {@code type} or a subclass of * {@code type}. * * @param unfiltered an iterator containing objects of any type * @param type the type of elements desired * @return an unmodifiable iterator containing all elements of the original * iterator that were of the requested type */ @SuppressWarnings("unchecked") // can cast to <T> because non-Ts are removed @GwtIncompatible("Class.isInstance") public static <T> UnmodifiableIterator<T> filter( Iterator<?> unfiltered, Class<T> type) { return (UnmodifiableIterator<T>) filter(unfiltered, instanceOf(type)); } /** * Returns {@code true} if one or more elements returned by {@code iterator} * satisfy the given predicate. */ public static <T> boolean any( Iterator<T> iterator, Predicate<? super T> predicate) { return indexOf(iterator, predicate) != -1; } /** * Returns {@code true} if every element returned by {@code iterator} * satisfies the given predicate. If {@code iterator} is empty, {@code true} * is returned. */ public static <T> boolean all( Iterator<T> iterator, Predicate<? super T> predicate) { checkNotNull(predicate); while (iterator.hasNext()) { T element = iterator.next(); if (!predicate.apply(element)) { return false; } } return true; } /** * Returns the first element in {@code iterator} that satisfies the given * predicate; use this method only when such an element is known to exist. If * no such element is found, the iterator will be left exhausted: its {@code * hasNext()} method will return {@code false}. If it is possible that * <i>no</i> element will match, use {@link #tryFind} or {@link * #find(Iterator, Predicate, Object)} instead. * * @throws NoSuchElementException if no element in {@code iterator} matches * the given predicate */ public static <T> T find( Iterator<T> iterator, Predicate<? super T> predicate) { return filter(iterator, predicate).next(); } /** * Returns the first element in {@code iterator} that satisfies the given * predicate. If no such element is found, {@code defaultValue} will be * returned from this method and the iterator will be left exhausted: its * {@code hasNext()} method will return {@code false}. Note that this can * usually be handled more naturally using {@code * tryFind(iterator, predicate).or(defaultValue)}. * * @since 7.0 */ @Nullable public static <T> T find(Iterator<? extends T> iterator, Predicate<? super T> predicate, @Nullable T defaultValue) { return getNext(filter(iterator, predicate), defaultValue); } /** * Returns an {@link Optional} containing the first element in {@code * iterator} that satisfies the given predicate, if such an element exists. If * no such element is found, an empty {@link Optional} will be returned from * this method and the iterator will be left exhausted: its {@code * hasNext()} method will return {@code false}. * * <p><b>Warning:</b> avoid using a {@code predicate} that matches {@code * null}. If {@code null} is matched in {@code iterator}, a * NullPointerException will be thrown. * * @since 11.0 */ public static <T> Optional<T> tryFind( Iterator<T> iterator, Predicate<? super T> predicate) { UnmodifiableIterator<T> filteredIterator = filter(iterator, predicate); return filteredIterator.hasNext() ? Optional.of(filteredIterator.next()) : Optional.<T>absent(); } /** * Returns the index in {@code iterator} of the first element that satisfies * the provided {@code predicate}, or {@code -1} if the Iterator has no such * elements. * * <p>More formally, returns the lowest index {@code i} such that * {@code predicate.apply(Iterators.get(iterator, i))} returns {@code true}, * or {@code -1} if there is no such index. * * <p>If -1 is returned, the iterator will be left exhausted: its * {@code hasNext()} method will return {@code false}. Otherwise, * the iterator will be set to the element which satisfies the * {@code predicate}. * * @since 2.0 */ public static <T> int indexOf( Iterator<T> iterator, Predicate<? super T> predicate) { checkNotNull(predicate, "predicate"); for (int i = 0; iterator.hasNext(); i++) { T current = iterator.next(); if (predicate.apply(current)) { return i; } } return -1; } /** * Returns an iterator that applies {@code function} to each element of {@code * fromIterator}. * * <p>The returned iterator supports {@code remove()} if the provided iterator * does. After a successful {@code remove()} call, {@code fromIterator} no * longer contains the corresponding element. */ public static <F, T> Iterator<T> transform(final Iterator<F> fromIterator, final Function<? super F, ? extends T> function) { checkNotNull(function); return new TransformedIterator<F, T>(fromIterator) { @Override T transform(F from) { return function.apply(from); } }; } /** * Advances {@code iterator} {@code position + 1} times, returning the * element at the {@code position}th position. * * @param position position of the element to return * @return the element at the specified position in {@code iterator} * @throws IndexOutOfBoundsException if {@code position} is negative or * greater than or equal to the number of elements remaining in * {@code iterator} */ public static <T> T get(Iterator<T> iterator, int position) { checkNonnegative(position); int skipped = advance(iterator, position); if (!iterator.hasNext()) { throw new IndexOutOfBoundsException("position (" + position + ") must be less than the number of elements that remained (" + skipped + ")"); } return iterator.next(); } static void checkNonnegative(int position) { if (position < 0) { throw new IndexOutOfBoundsException("position (" + position + ") must not be negative"); } } /** * Advances {@code iterator} {@code position + 1} times, returning the * element at the {@code position}th position or {@code defaultValue} * otherwise. * * @param position position of the element to return * @param defaultValue the default value to return if the iterator is empty * or if {@code position} is greater than the number of elements * remaining in {@code iterator} * @return the element at the specified position in {@code iterator} or * {@code defaultValue} if {@code iterator} produces fewer than * {@code position + 1} elements. * @throws IndexOutOfBoundsException if {@code position} is negative * @since 4.0 */ @Nullable public static <T> T get(Iterator<? extends T> iterator, int position, @Nullable T defaultValue) { checkNonnegative(position); advance(iterator, position); return getNext(iterator, defaultValue); } /** * Returns the next element in {@code iterator} or {@code defaultValue} if * the iterator is empty. The {@link Iterables} analog to this method is * {@link Iterables#getFirst}. * * @param defaultValue the default value to return if the iterator is empty * @return the next element of {@code iterator} or the default value * @since 7.0 */ @Nullable public static <T> T getNext(Iterator<? extends T> iterator, @Nullable T defaultValue) { return iterator.hasNext() ? iterator.next() : defaultValue; } /** * Advances {@code iterator} to the end, returning the last element. * * @return the last element of {@code iterator} * @throws NoSuchElementException if the iterator is empty */ public static <T> T getLast(Iterator<T> iterator) { while (true) { T current = iterator.next(); if (!iterator.hasNext()) { return current; } } } /** * Advances {@code iterator} to the end, returning the last element or * {@code defaultValue} if the iterator is empty. * * @param defaultValue the default value to return if the iterator is empty * @return the last element of {@code iterator} * @since 3.0 */ @Nullable public static <T> T getLast(Iterator<? extends T> iterator, @Nullable T defaultValue) { return iterator.hasNext() ? getLast(iterator) : defaultValue; } /** * Calls {@code next()} on {@code iterator}, either {@code numberToAdvance} times * or until {@code hasNext()} returns {@code false}, whichever comes first. * * @return the number of elements the iterator was advanced * @since 13.0 (since 3.0 as {@code Iterators.skip}) */ public static int advance(Iterator<?> iterator, int numberToAdvance) { checkNotNull(iterator); checkArgument(numberToAdvance >= 0, "numberToAdvance must be nonnegative"); int i; for (i = 0; i < numberToAdvance && iterator.hasNext(); i++) { iterator.next(); } return i; } /** * Creates an iterator returning the first {@code limitSize} elements of the * given iterator. If the original iterator does not contain that many * elements, the returned iterator will have the same behavior as the original * iterator. The returned iterator supports {@code remove()} if the original * iterator does. * * @param iterator the iterator to limit * @param limitSize the maximum number of elements in the returned iterator * @throws IllegalArgumentException if {@code limitSize} is negative * @since 3.0 */ public static <T> Iterator<T> limit( final Iterator<T> iterator, final int limitSize) { checkNotNull(iterator); checkArgument(limitSize >= 0, "limit is negative"); return new Iterator<T>() { private int count; @Override public boolean hasNext() { return count < limitSize && iterator.hasNext(); } @Override public T next() { if (!hasNext()) { throw new NoSuchElementException(); } count++; return iterator.next(); } @Override public void remove() { iterator.remove(); } }; } /** * Returns a view of the supplied {@code iterator} that removes each element * from the supplied {@code iterator} as it is returned. * * <p>The provided iterator must support {@link Iterator#remove()} or * else the returned iterator will fail on the first call to {@code * next}. * * @param iterator the iterator to remove and return elements from * @return an iterator that removes and returns elements from the * supplied iterator * @since 2.0 */ public static <T> Iterator<T> consumingIterator(final Iterator<T> iterator) { checkNotNull(iterator); return new UnmodifiableIterator<T>() { @Override public boolean hasNext() { return iterator.hasNext(); } @Override public T next() { T next = iterator.next(); iterator.remove(); return next; } @Override public String toString() { return "Iterators.consumingIterator(...)"; } }; } /** * Deletes and returns the next value from the iterator, or returns * {@code null} if there is no such value. */ @Nullable static <T> T pollNext(Iterator<T> iterator) { if (iterator.hasNext()) { T result = iterator.next(); iterator.remove(); return result; } else { return null; } } // Methods only in Iterators, not in Iterables /** * Clears the iterator using its remove method. */ static void clear(Iterator<?> iterator) { checkNotNull(iterator); while (iterator.hasNext()) { iterator.next(); iterator.remove(); } } /** * Returns an iterator containing the elements of {@code array} in order. The * returned iterator is a view of the array; subsequent changes to the array * will be reflected in the iterator. * * <p><b>Note:</b> It is often preferable to represent your data using a * collection type, for example using {@link Arrays#asList(Object[])}, making * this method unnecessary. * * <p>The {@code Iterable} equivalent of this method is either {@link * Arrays#asList(Object[])}, {@link ImmutableList#copyOf(Object[])}}, * or {@link ImmutableList#of}. */ public static <T> UnmodifiableIterator<T> forArray(final T... array) { return forArray(array, 0, array.length, 0); } /** * Returns a list iterator containing the elements in the specified range of * {@code array} in order, starting at the specified index. * * <p>The {@code Iterable} equivalent of this method is {@code * Arrays.asList(array).subList(offset, offset + length).listIterator(index)}. */ static <T> UnmodifiableListIterator<T> forArray( final T[] array, final int offset, int length, int index) { checkArgument(length >= 0); int end = offset + length; // Technically we should give a slightly more descriptive error on overflow Preconditions.checkPositionIndexes(offset, end, array.length); Preconditions.checkPositionIndex(index, length); if (length == 0) { return emptyListIterator(); } /* * We can't use call the two-arg constructor with arguments (offset, end) * because the returned Iterator is a ListIterator that may be moved back * past the beginning of the iteration. */ return new AbstractIndexedListIterator<T>(length, index) { @Override protected T get(int index) { return array[offset + index]; } }; } /** * Returns an iterator containing only {@code value}. * * <p>The {@link Iterable} equivalent of this method is {@link * Collections#singleton}. */ public static <T> UnmodifiableIterator<T> singletonIterator( @Nullable final T value) { return new UnmodifiableIterator<T>() { boolean done; @Override public boolean hasNext() { return !done; } @Override public T next() { if (done) { throw new NoSuchElementException(); } done = true; return value; } }; } /** * Adapts an {@code Enumeration} to the {@code Iterator} interface. * * <p>This method has no equivalent in {@link Iterables} because viewing an * {@code Enumeration} as an {@code Iterable} is impossible. However, the * contents can be <i>copied</i> into a collection using {@link * Collections#list}. */ public static <T> UnmodifiableIterator<T> forEnumeration( final Enumeration<T> enumeration) { checkNotNull(enumeration); return new UnmodifiableIterator<T>() { @Override public boolean hasNext() { return enumeration.hasMoreElements(); } @Override public T next() { return enumeration.nextElement(); } }; } /** * Adapts an {@code Iterator} to the {@code Enumeration} interface. * * <p>The {@code Iterable} equivalent of this method is either {@link * Collections#enumeration} (if you have a {@link Collection}), or * {@code Iterators.asEnumeration(collection.iterator())}. */ public static <T> Enumeration<T> asEnumeration(final Iterator<T> iterator) { checkNotNull(iterator); return new Enumeration<T>() { @Override public boolean hasMoreElements() { return iterator.hasNext(); } @Override public T nextElement() { return iterator.next(); } }; } /** * Implementation of PeekingIterator that avoids peeking unless necessary. */ private static class PeekingImpl<E> implements PeekingIterator<E> { private final Iterator<? extends E> iterator; private boolean hasPeeked; private E peekedElement; public PeekingImpl(Iterator<? extends E> iterator) { this.iterator = checkNotNull(iterator); } @Override public boolean hasNext() { return hasPeeked || iterator.hasNext(); } @Override public E next() { if (!hasPeeked) { return iterator.next(); } E result = peekedElement; hasPeeked = false; peekedElement = null; return result; } @Override public void remove() { checkState(!hasPeeked, "Can't remove after you've peeked at next"); iterator.remove(); } @Override public E peek() { if (!hasPeeked) { peekedElement = iterator.next(); hasPeeked = true; } return peekedElement; } } /** * Returns a {@code PeekingIterator} backed by the given iterator. * * <p>Calls to the {@code peek} method with no intervening calls to {@code * next} do not affect the iteration, and hence return the same object each * time. A subsequent call to {@code next} is guaranteed to return the same * object again. For example: <pre> {@code * * PeekingIterator<String> peekingIterator = * Iterators.peekingIterator(Iterators.forArray("a", "b")); * String a1 = peekingIterator.peek(); // returns "a" * String a2 = peekingIterator.peek(); // also returns "a" * String a3 = peekingIterator.next(); // also returns "a"}</pre> * * <p>Any structural changes to the underlying iteration (aside from those * performed by the iterator's own {@link PeekingIterator#remove()} method) * will leave the iterator in an undefined state. * * <p>The returned iterator does not support removal after peeking, as * explained by {@link PeekingIterator#remove()}. * * <p>Note: If the given iterator is already a {@code PeekingIterator}, * it <i>might</i> be returned to the caller, although this is neither * guaranteed to occur nor required to be consistent. For example, this * method <i>might</i> choose to pass through recognized implementations of * {@code PeekingIterator} when the behavior of the implementation is * known to meet the contract guaranteed by this method. * * <p>There is no {@link Iterable} equivalent to this method, so use this * method to wrap each individual iterator as it is generated. * * @param iterator the backing iterator. The {@link PeekingIterator} assumes * ownership of this iterator, so users should cease making direct calls * to it after calling this method. * @return a peeking iterator backed by that iterator. Apart from the * additional {@link PeekingIterator#peek()} method, this iterator behaves * exactly the same as {@code iterator}. */ public static <T> PeekingIterator<T> peekingIterator( Iterator<? extends T> iterator) { if (iterator instanceof PeekingImpl) { // Safe to cast <? extends T> to <T> because PeekingImpl only uses T // covariantly (and cannot be subclassed to add non-covariant uses). @SuppressWarnings("unchecked") PeekingImpl<T> peeking = (PeekingImpl<T>) iterator; return peeking; } return new PeekingImpl<T>(iterator); } /** * Simply returns its argument. * * @deprecated no need to use this * @since 10.0 */ @Deprecated public static <T> PeekingIterator<T> peekingIterator( PeekingIterator<T> iterator) { return checkNotNull(iterator); } /** * Returns an iterator over the merged contents of all given * {@code iterators}, traversing every element of the input iterators. * Equivalent entries will not be de-duplicated. * * <p>Callers must ensure that the source {@code iterators} are in * non-descending order as this method does not sort its input. * * <p>For any equivalent elements across all {@code iterators}, it is * undefined which element is returned first. * * @since 11.0 */ @Beta public static <T> UnmodifiableIterator<T> mergeSorted( Iterable<? extends Iterator<? extends T>> iterators, Comparator<? super T> comparator) { checkNotNull(iterators, "iterators"); checkNotNull(comparator, "comparator"); return new MergingIterator<T>(iterators, comparator); } /** * An iterator that performs a lazy N-way merge, calculating the next value * each time the iterator is polled. This amortizes the sorting cost over the * iteration and requires less memory than sorting all elements at once. * * <p>Retrieving a single element takes approximately O(log(M)) time, where M * is the number of iterators. (Retrieving all elements takes approximately * O(N*log(M)) time, where N is the total number of elements.) */ private static class MergingIterator<T> extends UnmodifiableIterator<T> { final Queue<PeekingIterator<T>> queue; public MergingIterator(Iterable<? extends Iterator<? extends T>> iterators, final Comparator<? super T> itemComparator) { // A comparator that's used by the heap, allowing the heap // to be sorted based on the top of each iterator. Comparator<PeekingIterator<T>> heapComparator = new Comparator<PeekingIterator<T>>() { @Override public int compare(PeekingIterator<T> o1, PeekingIterator<T> o2) { return itemComparator.compare(o1.peek(), o2.peek()); } }; queue = new PriorityQueue<PeekingIterator<T>>(2, heapComparator); for (Iterator<? extends T> iterator : iterators) { if (iterator.hasNext()) { queue.add(Iterators.peekingIterator(iterator)); } } } @Override public boolean hasNext() { return !queue.isEmpty(); } @Override public T next() { PeekingIterator<T> nextIter = queue.remove(); T next = nextIter.next(); if (nextIter.hasNext()) { queue.add(nextIter); } return next; } } /** * Used to avoid http://bugs.sun.com/view_bug.do?bug_id=6558557 */ static <T> ListIterator<T> cast(Iterator<T> iterator) { return (ListIterator<T>) iterator; } }