/* * Copyright (C) 2007 The Guava Authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.google.common.collect; import static com.google.common.base.Preconditions.checkArgument; import static com.google.common.base.Preconditions.checkNotNull; import static com.google.common.base.Predicates.compose; import static com.google.common.base.Predicates.equalTo; import static com.google.common.base.Predicates.in; import static com.google.common.base.Predicates.not; import static com.google.common.collect.CollectPreconditions.checkNonnegative; import com.google.common.annotations.Beta; import com.google.common.annotations.GwtCompatible; import com.google.common.annotations.GwtIncompatible; import com.google.common.base.Converter; import com.google.common.base.Equivalence; import com.google.common.base.Function; import com.google.common.base.Joiner.MapJoiner; import com.google.common.base.Objects; import com.google.common.base.Preconditions; import com.google.common.base.Predicate; import com.google.common.base.Predicates; import com.google.common.collect.MapDifference.ValueDifference; import com.google.common.primitives.Ints; import java.io.Serializable; import java.util.AbstractCollection; import java.util.AbstractMap; import java.util.Collection; import java.util.Collections; import java.util.Comparator; import java.util.EnumMap; import java.util.Enumeration; import java.util.HashMap; import java.util.IdentityHashMap; import java.util.Iterator; import java.util.LinkedHashMap; import java.util.Map; import java.util.Map.Entry; import java.util.NavigableMap; import java.util.NavigableSet; import java.util.Properties; import java.util.Set; import java.util.SortedMap; import java.util.SortedSet; import java.util.TreeMap; import java.util.concurrent.ConcurrentMap; import javax.annotation.Nullable; /** * Static utility methods pertaining to {@link Map} instances (including instances of * {@link SortedMap}, {@link BiMap}, etc.). Also see this class's counterparts * {@link Lists}, {@link Sets} and {@link Queues}. * * <p>See the Guava User Guide article on <a href= * "http://code.google.com/p/guava-libraries/wiki/CollectionUtilitiesExplained#Maps"> * {@code Maps}</a>. * * @author Kevin Bourrillion * @author Mike Bostock * @author Isaac Shum * @author Louis Wasserman * @since 2.0 (imported from Google Collections Library) */ @GwtCompatible(emulated = true) public final class Maps { private Maps() {} private enum EntryFunction implements Function<Entry<?, ?>, Object> { KEY { @Override @Nullable public Object apply(Entry<?, ?> entry) { return entry.getKey(); } }, VALUE { @Override @Nullable public Object apply(Entry<?, ?> entry) { return entry.getValue(); } }; } @SuppressWarnings("unchecked") static <K> Function<Entry<K, ?>, K> keyFunction() { return (Function) EntryFunction.KEY; } @SuppressWarnings("unchecked") static <V> Function<Entry<?, V>, V> valueFunction() { return (Function) EntryFunction.VALUE; } static <K, V> Iterator<K> keyIterator(Iterator<Entry<K, V>> entryIterator) { return Iterators.transform(entryIterator, Maps.<K>keyFunction()); } static <K, V> Iterator<V> valueIterator(Iterator<Entry<K, V>> entryIterator) { return Iterators.transform(entryIterator, Maps.<V>valueFunction()); } static <K, V> UnmodifiableIterator<V> valueIterator( final UnmodifiableIterator<Entry<K, V>> entryIterator) { return new UnmodifiableIterator<V>() { @Override public boolean hasNext() { return entryIterator.hasNext(); } @Override public V next() { return entryIterator.next().getValue(); } }; } /** * Returns an immutable map instance containing the given entries. * Internally, the returned map will be backed by an {@link EnumMap}. * * <p>The iteration order of the returned map follows the enum's iteration * order, not the order in which the elements appear in the given map. * * @param map the map to make an immutable copy of * @return an immutable map containing those entries * @since 14.0 */ @GwtCompatible(serializable = true) @Beta public static <K extends Enum<K>, V> ImmutableMap<K, V> immutableEnumMap( Map<K, ? extends V> map) { if (map instanceof ImmutableEnumMap) { @SuppressWarnings("unchecked") // safe covariant cast ImmutableEnumMap<K, V> result = (ImmutableEnumMap<K, V>) map; return result; } else if (map.isEmpty()) { return ImmutableMap.of(); } else { for (Map.Entry<K, ? extends V> entry : map.entrySet()) { checkNotNull(entry.getKey()); checkNotNull(entry.getValue()); } return ImmutableEnumMap.asImmutable(new EnumMap<K, V>(map)); } } /** * Creates a <i>mutable</i>, empty {@code HashMap} instance. * * <p><b>Note:</b> if mutability is not required, use {@link * ImmutableMap#of()} instead. * * <p><b>Note:</b> if {@code K} is an {@code enum} type, use {@link * #newEnumMap} instead. * * @return a new, empty {@code HashMap} */ public static <K, V> HashMap<K, V> newHashMap() { return new HashMap<K, V>(); } /** * Creates a {@code HashMap} instance, with a high enough "initial capacity" * that it <i>should</i> hold {@code expectedSize} elements without growth. * This behavior cannot be broadly guaranteed, but it is observed to be true * for OpenJDK 1.6. It also can't be guaranteed that the method isn't * inadvertently <i>oversizing</i> the returned map. * * @param expectedSize the number of elements you expect to add to the * returned map * @return a new, empty {@code HashMap} with enough capacity to hold {@code * expectedSize} elements without resizing * @throws IllegalArgumentException if {@code expectedSize} is negative */ public static <K, V> HashMap<K, V> newHashMapWithExpectedSize( int expectedSize) { return new HashMap<K, V>(capacity(expectedSize)); } /** * Returns a capacity that is sufficient to keep the map from being resized as * long as it grows no larger than expectedSize and the load factor is >= its * default (0.75). */ static int capacity(int expectedSize) { if (expectedSize < 3) { checkNonnegative(expectedSize, "expectedSize"); return expectedSize + 1; } if (expectedSize < Ints.MAX_POWER_OF_TWO) { // This is the calculation used in JDK8 to resize when a putAll // happens; it seems to be the most conservative calculation we // can make. 0,75 is the default load factor. return (int) ((float) expectedSize / 0.75F + 1.0F); } return Integer.MAX_VALUE; // any large value } /** * Creates a <i>mutable</i> {@code HashMap} instance with the same mappings as * the specified map. * * <p><b>Note:</b> if mutability is not required, use {@link * ImmutableMap#copyOf(Map)} instead. * * <p><b>Note:</b> if {@code K} is an {@link Enum} type, use {@link * #newEnumMap} instead. * * @param map the mappings to be placed in the new map * @return a new {@code HashMap} initialized with the mappings from {@code * map} */ public static <K, V> HashMap<K, V> newHashMap( Map<? extends K, ? extends V> map) { return new HashMap<K, V>(map); } /** * Creates a <i>mutable</i>, empty, insertion-ordered {@code LinkedHashMap} * instance. * * <p><b>Note:</b> if mutability is not required, use {@link * ImmutableMap#of()} instead. * * @return a new, empty {@code LinkedHashMap} */ public static <K, V> LinkedHashMap<K, V> newLinkedHashMap() { return new LinkedHashMap<K, V>(); } /** * Creates a <i>mutable</i>, insertion-ordered {@code LinkedHashMap} instance * with the same mappings as the specified map. * * <p><b>Note:</b> if mutability is not required, use {@link * ImmutableMap#copyOf(Map)} instead. * * @param map the mappings to be placed in the new map * @return a new, {@code LinkedHashMap} initialized with the mappings from * {@code map} */ public static <K, V> LinkedHashMap<K, V> newLinkedHashMap( Map<? extends K, ? extends V> map) { return new LinkedHashMap<K, V>(map); } /** * Returns a general-purpose instance of {@code ConcurrentMap}, which supports * all optional operations of the ConcurrentMap interface. It does not permit * null keys or values. It is serializable. * * <p>This is currently accomplished by calling {@link MapMaker#makeMap()}. * * <p>It is preferable to use {@code MapMaker} directly (rather than through * this method), as it presents numerous useful configuration options, * such as the concurrency level, load factor, key/value reference types, * and value computation. * * @return a new, empty {@code ConcurrentMap} * @since 3.0 */ public static <K, V> ConcurrentMap<K, V> newConcurrentMap() { return new MapMaker().<K, V>makeMap(); } /** * Creates a <i>mutable</i>, empty {@code TreeMap} instance using the natural * ordering of its elements. * * <p><b>Note:</b> if mutability is not required, use {@link * ImmutableSortedMap#of()} instead. * * @return a new, empty {@code TreeMap} */ public static <K extends Comparable, V> TreeMap<K, V> newTreeMap() { return new TreeMap<K, V>(); } /** * Creates a <i>mutable</i> {@code TreeMap} instance with the same mappings as * the specified map and using the same ordering as the specified map. * * <p><b>Note:</b> if mutability is not required, use {@link * ImmutableSortedMap#copyOfSorted(SortedMap)} instead. * * @param map the sorted map whose mappings are to be placed in the new map * and whose comparator is to be used to sort the new map * @return a new {@code TreeMap} initialized with the mappings from {@code * map} and using the comparator of {@code map} */ public static <K, V> TreeMap<K, V> newTreeMap(SortedMap<K, ? extends V> map) { return new TreeMap<K, V>(map); } /** * Creates a <i>mutable</i>, empty {@code TreeMap} instance using the given * comparator. * * <p><b>Note:</b> if mutability is not required, use {@code * ImmutableSortedMap.orderedBy(comparator).build()} instead. * * @param comparator the comparator to sort the keys with * @return a new, empty {@code TreeMap} */ public static <C, K extends C, V> TreeMap<K, V> newTreeMap( @Nullable Comparator<C> comparator) { // Ideally, the extra type parameter "C" shouldn't be necessary. It is a // work-around of a compiler type inference quirk that prevents the // following code from being compiled: // Comparator<Class<?>> comparator = null; // Map<Class<? extends Throwable>, String> map = newTreeMap(comparator); return new TreeMap<K, V>(comparator); } /** * Creates an {@code EnumMap} instance. * * @param type the key type for this map * @return a new, empty {@code EnumMap} */ public static <K extends Enum<K>, V> EnumMap<K, V> newEnumMap(Class<K> type) { return new EnumMap<K, V>(checkNotNull(type)); } /** * Creates an {@code EnumMap} with the same mappings as the specified map. * * @param map the map from which to initialize this {@code EnumMap} * @return a new {@code EnumMap} initialized with the mappings from {@code * map} * @throws IllegalArgumentException if {@code m} is not an {@code EnumMap} * instance and contains no mappings */ public static <K extends Enum<K>, V> EnumMap<K, V> newEnumMap( Map<K, ? extends V> map) { return new EnumMap<K, V>(map); } /** * Creates an {@code IdentityHashMap} instance. * * @return a new, empty {@code IdentityHashMap} */ public static <K, V> IdentityHashMap<K, V> newIdentityHashMap() { return new IdentityHashMap<K, V>(); } /** * Computes the difference between two maps. This difference is an immutable * snapshot of the state of the maps at the time this method is called. It * will never change, even if the maps change at a later time. * * <p>Since this method uses {@code HashMap} instances internally, the keys of * the supplied maps must be well-behaved with respect to * {@link Object#equals} and {@link Object#hashCode}. * * <p><b>Note:</b>If you only need to know whether two maps have the same * mappings, call {@code left.equals(right)} instead of this method. * * @param left the map to treat as the "left" map for purposes of comparison * @param right the map to treat as the "right" map for purposes of comparison * @return the difference between the two maps */ @SuppressWarnings("unchecked") public static <K, V> MapDifference<K, V> difference( Map<? extends K, ? extends V> left, Map<? extends K, ? extends V> right) { if (left instanceof SortedMap) { SortedMap<K, ? extends V> sortedLeft = (SortedMap<K, ? extends V>) left; SortedMapDifference<K, V> result = difference(sortedLeft, right); return result; } return difference(left, right, Equivalence.equals()); } /** * Computes the difference between two maps. This difference is an immutable * snapshot of the state of the maps at the time this method is called. It * will never change, even if the maps change at a later time. * * <p>Values are compared using a provided equivalence, in the case of * equality, the value on the 'left' is returned in the difference. * * <p>Since this method uses {@code HashMap} instances internally, the keys of * the supplied maps must be well-behaved with respect to * {@link Object#equals} and {@link Object#hashCode}. * * @param left the map to treat as the "left" map for purposes of comparison * @param right the map to treat as the "right" map for purposes of comparison * @param valueEquivalence the equivalence relationship to use to compare * values * @return the difference between the two maps * @since 10.0 */ @Beta public static <K, V> MapDifference<K, V> difference( Map<? extends K, ? extends V> left, Map<? extends K, ? extends V> right, Equivalence<? super V> valueEquivalence) { Preconditions.checkNotNull(valueEquivalence); Map<K, V> onlyOnLeft = newHashMap(); Map<K, V> onlyOnRight = new HashMap<K, V>(right); // will whittle it down Map<K, V> onBoth = newHashMap(); Map<K, MapDifference.ValueDifference<V>> differences = newHashMap(); doDifference(left, right, valueEquivalence, onlyOnLeft, onlyOnRight, onBoth, differences); return new MapDifferenceImpl<K, V>(onlyOnLeft, onlyOnRight, onBoth, differences); } private static <K, V> void doDifference( Map<? extends K, ? extends V> left, Map<? extends K, ? extends V> right, Equivalence<? super V> valueEquivalence, Map<K, V> onlyOnLeft, Map<K, V> onlyOnRight, Map<K, V> onBoth, Map<K, MapDifference.ValueDifference<V>> differences) { for (Entry<? extends K, ? extends V> entry : left.entrySet()) { K leftKey = entry.getKey(); V leftValue = entry.getValue(); if (right.containsKey(leftKey)) { V rightValue = onlyOnRight.remove(leftKey); if (valueEquivalence.equivalent(leftValue, rightValue)) { onBoth.put(leftKey, leftValue); } else { differences.put( leftKey, ValueDifferenceImpl.create(leftValue, rightValue)); } } else { onlyOnLeft.put(leftKey, leftValue); } } } private static <K, V> Map<K, V> unmodifiableMap(Map<K, V> map) { if (map instanceof SortedMap) { return Collections.unmodifiableSortedMap((SortedMap<K, ? extends V>) map); } else { return Collections.unmodifiableMap(map); } } static class MapDifferenceImpl<K, V> implements MapDifference<K, V> { final Map<K, V> onlyOnLeft; final Map<K, V> onlyOnRight; final Map<K, V> onBoth; final Map<K, ValueDifference<V>> differences; MapDifferenceImpl(Map<K, V> onlyOnLeft, Map<K, V> onlyOnRight, Map<K, V> onBoth, Map<K, ValueDifference<V>> differences) { this.onlyOnLeft = unmodifiableMap(onlyOnLeft); this.onlyOnRight = unmodifiableMap(onlyOnRight); this.onBoth = unmodifiableMap(onBoth); this.differences = unmodifiableMap(differences); } @Override public boolean areEqual() { return onlyOnLeft.isEmpty() && onlyOnRight.isEmpty() && differences.isEmpty(); } @Override public Map<K, V> entriesOnlyOnLeft() { return onlyOnLeft; } @Override public Map<K, V> entriesOnlyOnRight() { return onlyOnRight; } @Override public Map<K, V> entriesInCommon() { return onBoth; } @Override public Map<K, ValueDifference<V>> entriesDiffering() { return differences; } @Override public boolean equals(Object object) { if (object == this) { return true; } if (object instanceof MapDifference) { MapDifference<?, ?> other = (MapDifference<?, ?>) object; return entriesOnlyOnLeft().equals(other.entriesOnlyOnLeft()) && entriesOnlyOnRight().equals(other.entriesOnlyOnRight()) && entriesInCommon().equals(other.entriesInCommon()) && entriesDiffering().equals(other.entriesDiffering()); } return false; } @Override public int hashCode() { return Objects.hashCode(entriesOnlyOnLeft(), entriesOnlyOnRight(), entriesInCommon(), entriesDiffering()); } @Override public String toString() { if (areEqual()) { return "equal"; } StringBuilder result = new StringBuilder("not equal"); if (!onlyOnLeft.isEmpty()) { result.append(": only on left=").append(onlyOnLeft); } if (!onlyOnRight.isEmpty()) { result.append(": only on right=").append(onlyOnRight); } if (!differences.isEmpty()) { result.append(": value differences=").append(differences); } return result.toString(); } } static class ValueDifferenceImpl<V> implements MapDifference.ValueDifference<V> { private final V left; private final V right; static <V> ValueDifference<V> create(@Nullable V left, @Nullable V right) { return new ValueDifferenceImpl<V>(left, right); } private ValueDifferenceImpl(@Nullable V left, @Nullable V right) { this.left = left; this.right = right; } @Override public V leftValue() { return left; } @Override public V rightValue() { return right; } @Override public boolean equals(@Nullable Object object) { if (object instanceof MapDifference.ValueDifference) { MapDifference.ValueDifference<?> that = (MapDifference.ValueDifference<?>) object; return Objects.equal(this.left, that.leftValue()) && Objects.equal(this.right, that.rightValue()); } return false; } @Override public int hashCode() { return Objects.hashCode(left, right); } @Override public String toString() { return "(" + left + ", " + right + ")"; } } /** * Computes the difference between two sorted maps, using the comparator of * the left map, or {@code Ordering.natural()} if the left map uses the * natural ordering of its elements. This difference is an immutable snapshot * of the state of the maps at the time this method is called. It will never * change, even if the maps change at a later time. * * <p>Since this method uses {@code TreeMap} instances internally, the keys of * the right map must all compare as distinct according to the comparator * of the left map. * * <p><b>Note:</b>If you only need to know whether two sorted maps have the * same mappings, call {@code left.equals(right)} instead of this method. * * @param left the map to treat as the "left" map for purposes of comparison * @param right the map to treat as the "right" map for purposes of comparison * @return the difference between the two maps * @since 11.0 */ public static <K, V> SortedMapDifference<K, V> difference( SortedMap<K, ? extends V> left, Map<? extends K, ? extends V> right) { checkNotNull(left); checkNotNull(right); Comparator<? super K> comparator = orNaturalOrder(left.comparator()); SortedMap<K, V> onlyOnLeft = Maps.newTreeMap(comparator); SortedMap<K, V> onlyOnRight = Maps.newTreeMap(comparator); onlyOnRight.putAll(right); // will whittle it down SortedMap<K, V> onBoth = Maps.newTreeMap(comparator); SortedMap<K, MapDifference.ValueDifference<V>> differences = Maps.newTreeMap(comparator); doDifference(left, right, Equivalence.equals(), onlyOnLeft, onlyOnRight, onBoth, differences); return new SortedMapDifferenceImpl<K, V>(onlyOnLeft, onlyOnRight, onBoth, differences); } static class SortedMapDifferenceImpl<K, V> extends MapDifferenceImpl<K, V> implements SortedMapDifference<K, V> { SortedMapDifferenceImpl(SortedMap<K, V> onlyOnLeft, SortedMap<K, V> onlyOnRight, SortedMap<K, V> onBoth, SortedMap<K, ValueDifference<V>> differences) { super(onlyOnLeft, onlyOnRight, onBoth, differences); } @Override public SortedMap<K, ValueDifference<V>> entriesDiffering() { return (SortedMap<K, ValueDifference<V>>) super.entriesDiffering(); } @Override public SortedMap<K, V> entriesInCommon() { return (SortedMap<K, V>) super.entriesInCommon(); } @Override public SortedMap<K, V> entriesOnlyOnLeft() { return (SortedMap<K, V>) super.entriesOnlyOnLeft(); } @Override public SortedMap<K, V> entriesOnlyOnRight() { return (SortedMap<K, V>) super.entriesOnlyOnRight(); } } /** * Returns the specified comparator if not null; otherwise returns {@code * Ordering.natural()}. This method is an abomination of generics; the only * purpose of this method is to contain the ugly type-casting in one place. */ @SuppressWarnings("unchecked") static <E> Comparator<? super E> orNaturalOrder( @Nullable Comparator<? super E> comparator) { if (comparator != null) { // can't use ? : because of javac bug 5080917 return comparator; } return (Comparator<E>) Ordering.natural(); } /** * Returns a live {@link Map} view whose keys are the contents of {@code set} * and whose values are computed on demand using {@code function}. To get an * immutable <i>copy</i> instead, use {@link #toMap(Iterable, Function)}. * * <p>Specifically, for each {@code k} in the backing set, the returned map * has an entry mapping {@code k} to {@code function.apply(k)}. The {@code * keySet}, {@code values}, and {@code entrySet} views of the returned map * iterate in the same order as the backing set. * * <p>Modifications to the backing set are read through to the returned map. * The returned map supports removal operations if the backing set does. * Removal operations write through to the backing set. The returned map * does not support put operations. * * <p><b>Warning:</b> If the function rejects {@code null}, caution is * required to make sure the set does not contain {@code null}, because the * view cannot stop {@code null} from being added to the set. * * <p><b>Warning:</b> This method assumes that for any instance {@code k} of * key type {@code K}, {@code k.equals(k2)} implies that {@code k2} is also * of type {@code K}. Using a key type for which this may not hold, such as * {@code ArrayList}, may risk a {@code ClassCastException} when calling * methods on the resulting map view. * * @since 14.0 */ @Beta public static <K, V> Map<K, V> asMap( Set<K> set, Function<? super K, V> function) { if (set instanceof SortedSet) { return asMap((SortedSet<K>) set, function); } else { return new AsMapView<K, V>(set, function); } } /** * Returns a view of the sorted set as a map, mapping keys from the set * according to the specified function. * * <p>Specifically, for each {@code k} in the backing set, the returned map * has an entry mapping {@code k} to {@code function.apply(k)}. The {@code * keySet}, {@code values}, and {@code entrySet} views of the returned map * iterate in the same order as the backing set. * * <p>Modifications to the backing set are read through to the returned map. * The returned map supports removal operations if the backing set does. * Removal operations write through to the backing set. The returned map does * not support put operations. * * <p><b>Warning:</b> If the function rejects {@code null}, caution is * required to make sure the set does not contain {@code null}, because the * view cannot stop {@code null} from being added to the set. * * <p><b>Warning:</b> This method assumes that for any instance {@code k} of * key type {@code K}, {@code k.equals(k2)} implies that {@code k2} is also of * type {@code K}. Using a key type for which this may not hold, such as * {@code ArrayList}, may risk a {@code ClassCastException} when calling * methods on the resulting map view. * * @since 14.0 */ @Beta public static <K, V> SortedMap<K, V> asMap( SortedSet<K> set, Function<? super K, V> function) { return Platform.mapsAsMapSortedSet(set, function); } static <K, V> SortedMap<K, V> asMapSortedIgnoreNavigable(SortedSet<K> set, Function<? super K, V> function) { return new SortedAsMapView<K, V>(set, function); } /** * Returns a view of the navigable set as a map, mapping keys from the set * according to the specified function. * * <p>Specifically, for each {@code k} in the backing set, the returned map * has an entry mapping {@code k} to {@code function.apply(k)}. The {@code * keySet}, {@code values}, and {@code entrySet} views of the returned map * iterate in the same order as the backing set. * * <p>Modifications to the backing set are read through to the returned map. * The returned map supports removal operations if the backing set does. * Removal operations write through to the backing set. The returned map * does not support put operations. * * <p><b>Warning:</b> If the function rejects {@code null}, caution is * required to make sure the set does not contain {@code null}, because the * view cannot stop {@code null} from being added to the set. * * <p><b>Warning:</b> This method assumes that for any instance {@code k} of * key type {@code K}, {@code k.equals(k2)} implies that {@code k2} is also * of type {@code K}. Using a key type for which this may not hold, such as * {@code ArrayList}, may risk a {@code ClassCastException} when calling * methods on the resulting map view. * * @since 14.0 */ @Beta @GwtIncompatible("NavigableMap") public static <K, V> NavigableMap<K, V> asMap( NavigableSet<K> set, Function<? super K, V> function) { return new NavigableAsMapView<K, V>(set, function); } private static class AsMapView<K, V> extends ImprovedAbstractMap<K, V> { private final Set<K> set; final Function<? super K, V> function; Set<K> backingSet() { return set; } AsMapView(Set<K> set, Function<? super K, V> function) { this.set = checkNotNull(set); this.function = checkNotNull(function); } @Override public Set<K> createKeySet() { return removeOnlySet(backingSet()); } @Override Collection<V> createValues() { return Collections2.transform(set, function); } @Override public int size() { return backingSet().size(); } @Override public boolean containsKey(@Nullable Object key) { return backingSet().contains(key); } @Override public V get(@Nullable Object key) { if (Collections2.safeContains(backingSet(), key)) { @SuppressWarnings("unchecked") // unsafe, but Javadoc warns about it K k = (K) key; return function.apply(k); } else { return null; } } @Override public V remove(@Nullable Object key) { if (backingSet().remove(key)) { @SuppressWarnings("unchecked") // unsafe, but Javadoc warns about it K k = (K) key; return function.apply(k); } else { return null; } } @Override public void clear() { backingSet().clear(); } @Override protected Set<Entry<K, V>> createEntrySet() { return new EntrySet<K, V>() { @Override Map<K, V> map() { return AsMapView.this; } @Override public Iterator<Entry<K, V>> iterator() { return asMapEntryIterator(backingSet(), function); } }; } } static <K, V> Iterator<Entry<K, V>> asMapEntryIterator( Set<K> set, final Function<? super K, V> function) { return new TransformedIterator<K, Entry<K,V>>(set.iterator()) { @Override Entry<K, V> transform(final K key) { return immutableEntry(key, function.apply(key)); } }; } private static class SortedAsMapView<K, V> extends AsMapView<K, V> implements SortedMap<K, V> { SortedAsMapView(SortedSet<K> set, Function<? super K, V> function) { super(set, function); } @Override SortedSet<K> backingSet() { return (SortedSet<K>) super.backingSet(); } @Override public Comparator<? super K> comparator() { return backingSet().comparator(); } @Override public Set<K> keySet() { return removeOnlySortedSet(backingSet()); } @Override public SortedMap<K, V> subMap(K fromKey, K toKey) { return asMap(backingSet().subSet(fromKey, toKey), function); } @Override public SortedMap<K, V> headMap(K toKey) { return asMap(backingSet().headSet(toKey), function); } @Override public SortedMap<K, V> tailMap(K fromKey) { return asMap(backingSet().tailSet(fromKey), function); } @Override public K firstKey() { return backingSet().first(); } @Override public K lastKey() { return backingSet().last(); } } @GwtIncompatible("NavigableMap") private static final class NavigableAsMapView<K, V> extends AbstractNavigableMap<K, V> { /* * Using AbstractNavigableMap is simpler than extending SortedAsMapView and rewriting all the * NavigableMap methods. */ private final NavigableSet<K> set; private final Function<? super K, V> function; NavigableAsMapView(NavigableSet<K> ks, Function<? super K, V> vFunction) { this.set = checkNotNull(ks); this.function = checkNotNull(vFunction); } @Override public NavigableMap<K, V> subMap( K fromKey, boolean fromInclusive, K toKey, boolean toInclusive) { return asMap(set.subSet(fromKey, fromInclusive, toKey, toInclusive), function); } @Override public NavigableMap<K, V> headMap(K toKey, boolean inclusive) { return asMap(set.headSet(toKey, inclusive), function); } @Override public NavigableMap<K, V> tailMap(K fromKey, boolean inclusive) { return asMap(set.tailSet(fromKey, inclusive), function); } @Override public Comparator<? super K> comparator() { return set.comparator(); } @Override @Nullable public V get(@Nullable Object key) { if (Collections2.safeContains(set, key)) { @SuppressWarnings("unchecked") // unsafe, but Javadoc warns about it K k = (K) key; return function.apply(k); } else { return null; } } @Override public void clear() { set.clear(); } @Override Iterator<Entry<K, V>> entryIterator() { return asMapEntryIterator(set, function); } @Override Iterator<Entry<K, V>> descendingEntryIterator() { return descendingMap().entrySet().iterator(); } @Override public NavigableSet<K> navigableKeySet() { return removeOnlyNavigableSet(set); } @Override public int size() { return set.size(); } @Override public NavigableMap<K, V> descendingMap() { return asMap(set.descendingSet(), function); } } private static <E> Set<E> removeOnlySet(final Set<E> set) { return new ForwardingSet<E>() { @Override protected Set<E> delegate() { return set; } @Override public boolean add(E element) { throw new UnsupportedOperationException(); } @Override public boolean addAll(Collection<? extends E> es) { throw new UnsupportedOperationException(); } }; } private static <E> SortedSet<E> removeOnlySortedSet(final SortedSet<E> set) { return new ForwardingSortedSet<E>() { @Override protected SortedSet<E> delegate() { return set; } @Override public boolean add(E element) { throw new UnsupportedOperationException(); } @Override public boolean addAll(Collection<? extends E> es) { throw new UnsupportedOperationException(); } @Override public SortedSet<E> headSet(E toElement) { return removeOnlySortedSet(super.headSet(toElement)); } @Override public SortedSet<E> subSet(E fromElement, E toElement) { return removeOnlySortedSet(super.subSet(fromElement, toElement)); } @Override public SortedSet<E> tailSet(E fromElement) { return removeOnlySortedSet(super.tailSet(fromElement)); } }; } @GwtIncompatible("NavigableSet") private static <E> NavigableSet<E> removeOnlyNavigableSet(final NavigableSet<E> set) { return new ForwardingNavigableSet<E>() { @Override protected NavigableSet<E> delegate() { return set; } @Override public boolean add(E element) { throw new UnsupportedOperationException(); } @Override public boolean addAll(Collection<? extends E> es) { throw new UnsupportedOperationException(); } @Override public SortedSet<E> headSet(E toElement) { return removeOnlySortedSet(super.headSet(toElement)); } @Override public SortedSet<E> subSet(E fromElement, E toElement) { return removeOnlySortedSet( super.subSet(fromElement, toElement)); } @Override public SortedSet<E> tailSet(E fromElement) { return removeOnlySortedSet(super.tailSet(fromElement)); } @Override public NavigableSet<E> headSet(E toElement, boolean inclusive) { return removeOnlyNavigableSet(super.headSet(toElement, inclusive)); } @Override public NavigableSet<E> tailSet(E fromElement, boolean inclusive) { return removeOnlyNavigableSet(super.tailSet(fromElement, inclusive)); } @Override public NavigableSet<E> subSet(E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) { return removeOnlyNavigableSet(super.subSet( fromElement, fromInclusive, toElement, toInclusive)); } @Override public NavigableSet<E> descendingSet() { return removeOnlyNavigableSet(super.descendingSet()); } }; } /** * Returns an immutable map whose keys are the distinct elements of {@code * keys} and whose value for each key was computed by {@code valueFunction}. * The map's iteration order is the order of the first appearance of each key * in {@code keys}. * * <p>If {@code keys} is a {@link Set}, a live view can be obtained instead of * a copy using {@link Maps#asMap(Set, Function)}. * * @throws NullPointerException if any element of {@code keys} is * {@code null}, or if {@code valueFunction} produces {@code null} * for any key * @since 14.0 */ @Beta public static <K, V> ImmutableMap<K, V> toMap(Iterable<K> keys, Function<? super K, V> valueFunction) { return toMap(keys.iterator(), valueFunction); } /** * Returns an immutable map whose keys are the distinct elements of {@code * keys} and whose value for each key was computed by {@code valueFunction}. * The map's iteration order is the order of the first appearance of each key * in {@code keys}. * * @throws NullPointerException if any element of {@code keys} is * {@code null}, or if {@code valueFunction} produces {@code null} * for any key * @since 14.0 */ @Beta public static <K, V> ImmutableMap<K, V> toMap(Iterator<K> keys, Function<? super K, V> valueFunction) { checkNotNull(valueFunction); // Using LHM instead of a builder so as not to fail on duplicate keys Map<K, V> builder = newLinkedHashMap(); while (keys.hasNext()) { K key = keys.next(); builder.put(key, valueFunction.apply(key)); } return ImmutableMap.copyOf(builder); } /** * Returns an immutable map for which the {@link Map#values} are the given * elements in the given order, and each key is the product of invoking a * supplied function on its corresponding value. * * @param values the values to use when constructing the {@code Map} * @param keyFunction the function used to produce the key for each value * @return a map mapping the result of evaluating the function {@code * keyFunction} on each value in the input collection to that value * @throws IllegalArgumentException if {@code keyFunction} produces the same * key for more than one value in the input collection * @throws NullPointerException if any elements of {@code values} is null, or * if {@code keyFunction} produces {@code null} for any value */ public static <K, V> ImmutableMap<K, V> uniqueIndex( Iterable<V> values, Function<? super V, K> keyFunction) { return uniqueIndex(values.iterator(), keyFunction); } /** * Returns an immutable map for which the {@link Map#values} are the given * elements in the given order, and each key is the product of invoking a * supplied function on its corresponding value. * * @param values the values to use when constructing the {@code Map} * @param keyFunction the function used to produce the key for each value * @return a map mapping the result of evaluating the function {@code * keyFunction} on each value in the input collection to that value * @throws IllegalArgumentException if {@code keyFunction} produces the same * key for more than one value in the input collection * @throws NullPointerException if any elements of {@code values} is null, or * if {@code keyFunction} produces {@code null} for any value * @since 10.0 */ public static <K, V> ImmutableMap<K, V> uniqueIndex( Iterator<V> values, Function<? super V, K> keyFunction) { checkNotNull(keyFunction); ImmutableMap.Builder<K, V> builder = ImmutableMap.builder(); while (values.hasNext()) { V value = values.next(); builder.put(keyFunction.apply(value), value); } return builder.build(); } /** * Creates an {@code ImmutableMap<String, String>} from a {@code Properties} * instance. Properties normally derive from {@code Map<Object, Object>}, but * they typically contain strings, which is awkward. This method lets you get * a plain-old-{@code Map} out of a {@code Properties}. * * @param properties a {@code Properties} object to be converted * @return an immutable map containing all the entries in {@code properties} * @throws ClassCastException if any key in {@code Properties} is not a {@code * String} * @throws NullPointerException if any key or value in {@code Properties} is * null */ @GwtIncompatible("java.util.Properties") public static ImmutableMap<String, String> fromProperties( Properties properties) { ImmutableMap.Builder<String, String> builder = ImmutableMap.builder(); for (Enumeration<?> e = properties.propertyNames(); e.hasMoreElements();) { String key = (String) e.nextElement(); builder.put(key, properties.getProperty(key)); } return builder.build(); } /** * Returns an immutable map entry with the specified key and value. The {@link * Entry#setValue} operation throws an {@link UnsupportedOperationException}. * * <p>The returned entry is serializable. * * @param key the key to be associated with the returned entry * @param value the value to be associated with the returned entry */ @GwtCompatible(serializable = true) public static <K, V> Entry<K, V> immutableEntry( @Nullable K key, @Nullable V value) { return new ImmutableEntry<K, V>(key, value); } /** * Returns an unmodifiable view of the specified set of entries. The {@link * Entry#setValue} operation throws an {@link UnsupportedOperationException}, * as do any operations that would modify the returned set. * * @param entrySet the entries for which to return an unmodifiable view * @return an unmodifiable view of the entries */ static <K, V> Set<Entry<K, V>> unmodifiableEntrySet( Set<Entry<K, V>> entrySet) { return new UnmodifiableEntrySet<K, V>( Collections.unmodifiableSet(entrySet)); } /** * Returns an unmodifiable view of the specified map entry. The {@link * Entry#setValue} operation throws an {@link UnsupportedOperationException}. * This also has the side-effect of redefining {@code equals} to comply with * the Entry contract, to avoid a possible nefarious implementation of equals. * * @param entry the entry for which to return an unmodifiable view * @return an unmodifiable view of the entry */ static <K, V> Entry<K, V> unmodifiableEntry(final Entry<? extends K, ? extends V> entry) { checkNotNull(entry); return new AbstractMapEntry<K, V>() { @Override public K getKey() { return entry.getKey(); } @Override public V getValue() { return entry.getValue(); } }; } /** @see Multimaps#unmodifiableEntries */ static class UnmodifiableEntries<K, V> extends ForwardingCollection<Entry<K, V>> { private final Collection<Entry<K, V>> entries; UnmodifiableEntries(Collection<Entry<K, V>> entries) { this.entries = entries; } @Override protected Collection<Entry<K, V>> delegate() { return entries; } @Override public Iterator<Entry<K, V>> iterator() { final Iterator<Entry<K, V>> delegate = super.iterator(); return new UnmodifiableIterator<Entry<K, V>>() { @Override public boolean hasNext() { return delegate.hasNext(); } @Override public Entry<K, V> next() { return unmodifiableEntry(delegate.next()); } }; } // See java.util.Collections.UnmodifiableEntrySet for details on attacks. @Override public Object[] toArray() { return standardToArray(); } @Override public <T> T[] toArray(T[] array) { return standardToArray(array); } } /** @see Maps#unmodifiableEntrySet(Set) */ static class UnmodifiableEntrySet<K, V> extends UnmodifiableEntries<K, V> implements Set<Entry<K, V>> { UnmodifiableEntrySet(Set<Entry<K, V>> entries) { super(entries); } // See java.util.Collections.UnmodifiableEntrySet for details on attacks. @Override public boolean equals(@Nullable Object object) { return Sets.equalsImpl(this, object); } @Override public int hashCode() { return Sets.hashCodeImpl(this); } } /** * Returns a {@link Converter} that converts values using {@link BiMap#get bimap.get()}, * and whose inverse view converts values using * {@link BiMap#inverse bimap.inverse()}{@code .get()}. * * <p>To use a plain {@link Map} as a {@link Function}, see * {@link com.google.common.base.Functions#forMap(Map)} or * {@link com.google.common.base.Functions#forMap(Map, Object)}. * * @since 16.0 */ @Beta public static <A, B> Converter<A, B> asConverter(final BiMap<A, B> bimap) { return new BiMapConverter<A, B>(bimap); } private static final class BiMapConverter<A, B> extends Converter<A, B> implements Serializable { private final BiMap<A, B> bimap; BiMapConverter(BiMap<A, B> bimap) { this.bimap = checkNotNull(bimap); } @Override protected B doForward(A a) { return convert(bimap, a); } @Override protected A doBackward(B b) { return convert(bimap.inverse(), b); } private static <X, Y> Y convert(BiMap<X, Y> bimap, X input) { Y output = bimap.get(input); checkArgument(output != null, "No non-null mapping present for input: %s", input); return output; } @Override public boolean equals(@Nullable Object object) { if (object instanceof BiMapConverter) { BiMapConverter<?, ?> that = (BiMapConverter<?, ?>) object; return this.bimap.equals(that.bimap); } return false; } @Override public int hashCode() { return bimap.hashCode(); } // There's really no good way to implement toString() without printing the entire BiMap, right? @Override public String toString() { return "Maps.asConverter(" + bimap + ")"; } private static final long serialVersionUID = 0L; } /** * Returns a synchronized (thread-safe) bimap backed by the specified bimap. * In order to guarantee serial access, it is critical that <b>all</b> access * to the backing bimap is accomplished through the returned bimap. * * <p>It is imperative that the user manually synchronize on the returned map * when accessing any of its collection views: <pre> {@code * * BiMap<Long, String> map = Maps.synchronizedBiMap( * HashBiMap.<Long, String>create()); * ... * Set<Long> set = map.keySet(); // Needn't be in synchronized block * ... * synchronized (map) { // Synchronizing on map, not set! * Iterator<Long> it = set.iterator(); // Must be in synchronized block * while (it.hasNext()) { * foo(it.next()); * } * }}</pre> * * <p>Failure to follow this advice may result in non-deterministic behavior. * * <p>The returned bimap will be serializable if the specified bimap is * serializable. * * @param bimap the bimap to be wrapped in a synchronized view * @return a sychronized view of the specified bimap */ public static <K, V> BiMap<K, V> synchronizedBiMap(BiMap<K, V> bimap) { return Synchronized.biMap(bimap, null); } /** * Returns an unmodifiable view of the specified bimap. This method allows * modules to provide users with "read-only" access to internal bimaps. Query * operations on the returned bimap "read through" to the specified bimap, and * attempts to modify the returned map, whether direct or via its collection * views, result in an {@code UnsupportedOperationException}. * * <p>The returned bimap will be serializable if the specified bimap is * serializable. * * @param bimap the bimap for which an unmodifiable view is to be returned * @return an unmodifiable view of the specified bimap */ public static <K, V> BiMap<K, V> unmodifiableBiMap( BiMap<? extends K, ? extends V> bimap) { return new UnmodifiableBiMap<K, V>(bimap, null); } /** @see Maps#unmodifiableBiMap(BiMap) */ private static class UnmodifiableBiMap<K, V> extends ForwardingMap<K, V> implements BiMap<K, V>, Serializable { final Map<K, V> unmodifiableMap; final BiMap<? extends K, ? extends V> delegate; BiMap<V, K> inverse; transient Set<V> values; UnmodifiableBiMap(BiMap<? extends K, ? extends V> delegate, @Nullable BiMap<V, K> inverse) { unmodifiableMap = Collections.unmodifiableMap(delegate); this.delegate = delegate; this.inverse = inverse; } @Override protected Map<K, V> delegate() { return unmodifiableMap; } @Override public V forcePut(K key, V value) { throw new UnsupportedOperationException(); } @Override public BiMap<V, K> inverse() { BiMap<V, K> result = inverse; return (result == null) ? inverse = new UnmodifiableBiMap<V, K>(delegate.inverse(), this) : result; } @Override public Set<V> values() { Set<V> result = values; return (result == null) ? values = Collections.unmodifiableSet(delegate.values()) : result; } private static final long serialVersionUID = 0; } /** * Returns a view of a map where each value is transformed by a function. All * other properties of the map, such as iteration order, are left intact. For * example, the code: <pre> {@code * * Map<String, Integer> map = ImmutableMap.of("a", 4, "b", 9); * Function<Integer, Double> sqrt = * new Function<Integer, Double>() { * public Double apply(Integer in) { * return Math.sqrt((int) in); * } * }; * Map<String, Double> transformed = Maps.transformValues(map, sqrt); * System.out.println(transformed);}</pre> * * ... prints {@code {a=2.0, b=3.0}}. * * <p>Changes in the underlying map are reflected in this view. Conversely, * this view supports removal operations, and these are reflected in the * underlying map. * * <p>It's acceptable for the underlying map to contain null keys, and even * null values provided that the function is capable of accepting null input. * The transformed map might contain null values, if the function sometimes * gives a null result. * * <p>The returned map is not thread-safe or serializable, even if the * underlying map is. * * <p>The function is applied lazily, invoked when needed. This is necessary * for the returned map to be a view, but it means that the function will be * applied many times for bulk operations like {@link Map#containsValue} and * {@code Map.toString()}. For this to perform well, {@code function} should * be fast. To avoid lazy evaluation when the returned map doesn't need to be * a view, copy the returned map into a new map of your choosing. */ public static <K, V1, V2> Map<K, V2> transformValues( Map<K, V1> fromMap, Function<? super V1, V2> function) { return transformEntries(fromMap, asEntryTransformer(function)); } /** * Returns a view of a sorted map where each value is transformed by a * function. All other properties of the map, such as iteration order, are * left intact. For example, the code: <pre> {@code * * SortedMap<String, Integer> map = ImmutableSortedMap.of("a", 4, "b", 9); * Function<Integer, Double> sqrt = * new Function<Integer, Double>() { * public Double apply(Integer in) { * return Math.sqrt((int) in); * } * }; * SortedMap<String, Double> transformed = * Maps.transformValues(map, sqrt); * System.out.println(transformed);}</pre> * * ... prints {@code {a=2.0, b=3.0}}. * * <p>Changes in the underlying map are reflected in this view. Conversely, * this view supports removal operations, and these are reflected in the * underlying map. * * <p>It's acceptable for the underlying map to contain null keys, and even * null values provided that the function is capable of accepting null input. * The transformed map might contain null values, if the function sometimes * gives a null result. * * <p>The returned map is not thread-safe or serializable, even if the * underlying map is. * * <p>The function is applied lazily, invoked when needed. This is necessary * for the returned map to be a view, but it means that the function will be * applied many times for bulk operations like {@link Map#containsValue} and * {@code Map.toString()}. For this to perform well, {@code function} should * be fast. To avoid lazy evaluation when the returned map doesn't need to be * a view, copy the returned map into a new map of your choosing. * * @since 11.0 */ public static <K, V1, V2> SortedMap<K, V2> transformValues( SortedMap<K, V1> fromMap, Function<? super V1, V2> function) { return transformEntries(fromMap, asEntryTransformer(function)); } /** * Returns a view of a navigable map where each value is transformed by a * function. All other properties of the map, such as iteration order, are * left intact. For example, the code: <pre> {@code * * NavigableMap<String, Integer> map = Maps.newTreeMap(); * map.put("a", 4); * map.put("b", 9); * Function<Integer, Double> sqrt = * new Function<Integer, Double>() { * public Double apply(Integer in) { * return Math.sqrt((int) in); * } * }; * NavigableMap<String, Double> transformed = * Maps.transformNavigableValues(map, sqrt); * System.out.println(transformed);}</pre> * * ... prints {@code {a=2.0, b=3.0}}. * * Changes in the underlying map are reflected in this view. * Conversely, this view supports removal operations, and these are reflected * in the underlying map. * * <p>It's acceptable for the underlying map to contain null keys, and even * null values provided that the function is capable of accepting null input. * The transformed map might contain null values, if the function sometimes * gives a null result. * * <p>The returned map is not thread-safe or serializable, even if the * underlying map is. * * <p>The function is applied lazily, invoked when needed. This is necessary * for the returned map to be a view, but it means that the function will be * applied many times for bulk operations like {@link Map#containsValue} and * {@code Map.toString()}. For this to perform well, {@code function} should * be fast. To avoid lazy evaluation when the returned map doesn't need to be * a view, copy the returned map into a new map of your choosing. * * @since 13.0 */ @GwtIncompatible("NavigableMap") public static <K, V1, V2> NavigableMap<K, V2> transformValues( NavigableMap<K, V1> fromMap, Function<? super V1, V2> function) { return transformEntries(fromMap, asEntryTransformer(function)); } /** * Returns a view of a map whose values are derived from the original map's * entries. In contrast to {@link #transformValues}, this method's * entry-transformation logic may depend on the key as well as the value. * * <p>All other properties of the transformed map, such as iteration order, * are left intact. For example, the code: <pre> {@code * * Map<String, Boolean> options = * ImmutableMap.of("verbose", true, "sort", false); * EntryTransformer<String, Boolean, String> flagPrefixer = * new EntryTransformer<String, Boolean, String>() { * public String transformEntry(String key, Boolean value) { * return value ? key : "no" + key; * } * }; * Map<String, String> transformed = * Maps.transformEntries(options, flagPrefixer); * System.out.println(transformed);}</pre> * * ... prints {@code {verbose=verbose, sort=nosort}}. * * <p>Changes in the underlying map are reflected in this view. Conversely, * this view supports removal operations, and these are reflected in the * underlying map. * * <p>It's acceptable for the underlying map to contain null keys and null * values provided that the transformer is capable of accepting null inputs. * The transformed map might contain null values if the transformer sometimes * gives a null result. * * <p>The returned map is not thread-safe or serializable, even if the * underlying map is. * * <p>The transformer is applied lazily, invoked when needed. This is * necessary for the returned map to be a view, but it means that the * transformer will be applied many times for bulk operations like {@link * Map#containsValue} and {@link Object#toString}. For this to perform well, * {@code transformer} should be fast. To avoid lazy evaluation when the * returned map doesn't need to be a view, copy the returned map into a new * map of your choosing. * * <p><b>Warning:</b> This method assumes that for any instance {@code k} of * {@code EntryTransformer} key type {@code K}, {@code k.equals(k2)} implies * that {@code k2} is also of type {@code K}. Using an {@code * EntryTransformer} key type for which this may not hold, such as {@code * ArrayList}, may risk a {@code ClassCastException} when calling methods on * the transformed map. * * @since 7.0 */ public static <K, V1, V2> Map<K, V2> transformEntries( Map<K, V1> fromMap, EntryTransformer<? super K, ? super V1, V2> transformer) { if (fromMap instanceof SortedMap) { return transformEntries((SortedMap<K, V1>) fromMap, transformer); } return new TransformedEntriesMap<K, V1, V2>(fromMap, transformer); } /** * Returns a view of a sorted map whose values are derived from the original * sorted map's entries. In contrast to {@link #transformValues}, this * method's entry-transformation logic may depend on the key as well as the * value. * * <p>All other properties of the transformed map, such as iteration order, * are left intact. For example, the code: <pre> {@code * * Map<String, Boolean> options = * ImmutableSortedMap.of("verbose", true, "sort", false); * EntryTransformer<String, Boolean, String> flagPrefixer = * new EntryTransformer<String, Boolean, String>() { * public String transformEntry(String key, Boolean value) { * return value ? key : "yes" + key; * } * }; * SortedMap<String, String> transformed = * Maps.transformEntries(options, flagPrefixer); * System.out.println(transformed);}</pre> * * ... prints {@code {sort=yessort, verbose=verbose}}. * * <p>Changes in the underlying map are reflected in this view. Conversely, * this view supports removal operations, and these are reflected in the * underlying map. * * <p>It's acceptable for the underlying map to contain null keys and null * values provided that the transformer is capable of accepting null inputs. * The transformed map might contain null values if the transformer sometimes * gives a null result. * * <p>The returned map is not thread-safe or serializable, even if the * underlying map is. * * <p>The transformer is applied lazily, invoked when needed. This is * necessary for the returned map to be a view, but it means that the * transformer will be applied many times for bulk operations like {@link * Map#containsValue} and {@link Object#toString}. For this to perform well, * {@code transformer} should be fast. To avoid lazy evaluation when the * returned map doesn't need to be a view, copy the returned map into a new * map of your choosing. * * <p><b>Warning:</b> This method assumes that for any instance {@code k} of * {@code EntryTransformer} key type {@code K}, {@code k.equals(k2)} implies * that {@code k2} is also of type {@code K}. Using an {@code * EntryTransformer} key type for which this may not hold, such as {@code * ArrayList}, may risk a {@code ClassCastException} when calling methods on * the transformed map. * * @since 11.0 */ public static <K, V1, V2> SortedMap<K, V2> transformEntries( SortedMap<K, V1> fromMap, EntryTransformer<? super K, ? super V1, V2> transformer) { return Platform.mapsTransformEntriesSortedMap(fromMap, transformer); } /** * Returns a view of a navigable map whose values are derived from the * original navigable map's entries. In contrast to {@link * #transformValues}, this method's entry-transformation logic may * depend on the key as well as the value. * * <p>All other properties of the transformed map, such as iteration order, * are left intact. For example, the code: <pre> {@code * * NavigableMap<String, Boolean> options = Maps.newTreeMap(); * options.put("verbose", false); * options.put("sort", true); * EntryTransformer<String, Boolean, String> flagPrefixer = * new EntryTransformer<String, Boolean, String>() { * public String transformEntry(String key, Boolean value) { * return value ? key : ("yes" + key); * } * }; * NavigableMap<String, String> transformed = * LabsMaps.transformNavigableEntries(options, flagPrefixer); * System.out.println(transformed);}</pre> * * ... prints {@code {sort=yessort, verbose=verbose}}. * * <p>Changes in the underlying map are reflected in this view. * Conversely, this view supports removal operations, and these are reflected * in the underlying map. * * <p>It's acceptable for the underlying map to contain null keys and null * values provided that the transformer is capable of accepting null inputs. * The transformed map might contain null values if the transformer sometimes * gives a null result. * * <p>The returned map is not thread-safe or serializable, even if the * underlying map is. * * <p>The transformer is applied lazily, invoked when needed. This is * necessary for the returned map to be a view, but it means that the * transformer will be applied many times for bulk operations like {@link * Map#containsValue} and {@link Object#toString}. For this to perform well, * {@code transformer} should be fast. To avoid lazy evaluation when the * returned map doesn't need to be a view, copy the returned map into a new * map of your choosing. * * <p><b>Warning:</b> This method assumes that for any instance {@code k} of * {@code EntryTransformer} key type {@code K}, {@code k.equals(k2)} implies * that {@code k2} is also of type {@code K}. Using an {@code * EntryTransformer} key type for which this may not hold, such as {@code * ArrayList}, may risk a {@code ClassCastException} when calling methods on * the transformed map. * * @since 13.0 */ @GwtIncompatible("NavigableMap") public static <K, V1, V2> NavigableMap<K, V2> transformEntries( final NavigableMap<K, V1> fromMap, EntryTransformer<? super K, ? super V1, V2> transformer) { return new TransformedEntriesNavigableMap<K, V1, V2>(fromMap, transformer); } static <K, V1, V2> SortedMap<K, V2> transformEntriesIgnoreNavigable( SortedMap<K, V1> fromMap, EntryTransformer<? super K, ? super V1, V2> transformer) { return new TransformedEntriesSortedMap<K, V1, V2>(fromMap, transformer); } /** * A transformation of the value of a key-value pair, using both key and value * as inputs. To apply the transformation to a map, use * {@link Maps#transformEntries(Map, EntryTransformer)}. * * @param <K> the key type of the input and output entries * @param <V1> the value type of the input entry * @param <V2> the value type of the output entry * @since 7.0 */ public interface EntryTransformer<K, V1, V2> { /** * Determines an output value based on a key-value pair. This method is * <i>generally expected</i>, but not absolutely required, to have the * following properties: * * <ul> * <li>Its execution does not cause any observable side effects. * <li>The computation is <i>consistent with equals</i>; that is, * {@link Objects#equal Objects.equal}{@code (k1, k2) &&} * {@link Objects#equal}{@code (v1, v2)} implies that {@code * Objects.equal(transformer.transform(k1, v1), * transformer.transform(k2, v2))}. * </ul> * * @throws NullPointerException if the key or value is null and this * transformer does not accept null arguments */ V2 transformEntry(@Nullable K key, @Nullable V1 value); } /** * Views a function as an entry transformer that ignores the entry key. */ static <K, V1, V2> EntryTransformer<K, V1, V2> asEntryTransformer(final Function<? super V1, V2> function) { checkNotNull(function); return new EntryTransformer<K, V1, V2>() { @Override public V2 transformEntry(K key, V1 value) { return function.apply(value); } }; } static <K, V1, V2> Function<V1, V2> asValueToValueFunction( final EntryTransformer<? super K, V1, V2> transformer, final K key) { checkNotNull(transformer); return new Function<V1, V2>() { @Override public V2 apply(@Nullable V1 v1) { return transformer.transformEntry(key, v1); } }; } /** * Views an entry transformer as a function from {@code Entry} to values. */ static <K, V1, V2> Function<Entry<K, V1>, V2> asEntryToValueFunction( final EntryTransformer<? super K, ? super V1, V2> transformer) { checkNotNull(transformer); return new Function<Entry<K, V1>, V2>() { @Override public V2 apply(Entry<K, V1> entry) { return transformer.transformEntry(entry.getKey(), entry.getValue()); } }; } /** * Returns a view of an entry transformed by the specified transformer. */ static <V2, K, V1> Entry<K, V2> transformEntry( final EntryTransformer<? super K, ? super V1, V2> transformer, final Entry<K, V1> entry) { checkNotNull(transformer); checkNotNull(entry); return new AbstractMapEntry<K, V2>() { @Override public K getKey() { return entry.getKey(); } @Override public V2 getValue() { return transformer.transformEntry(entry.getKey(), entry.getValue()); } }; } /** * Views an entry transformer as a function from entries to entries. */ static <K, V1, V2> Function<Entry<K, V1>, Entry<K, V2>> asEntryToEntryFunction( final EntryTransformer<? super K, ? super V1, V2> transformer) { checkNotNull(transformer); return new Function<Entry<K, V1>, Entry<K, V2>>() { @Override public Entry<K, V2> apply(final Entry<K, V1> entry) { return transformEntry(transformer, entry); } }; } static class TransformedEntriesMap<K, V1, V2> extends ImprovedAbstractMap<K, V2> { final Map<K, V1> fromMap; final EntryTransformer<? super K, ? super V1, V2> transformer; TransformedEntriesMap( Map<K, V1> fromMap, EntryTransformer<? super K, ? super V1, V2> transformer) { this.fromMap = checkNotNull(fromMap); this.transformer = checkNotNull(transformer); } @Override public int size() { return fromMap.size(); } @Override public boolean containsKey(Object key) { return fromMap.containsKey(key); } // safe as long as the user followed the <b>Warning</b> in the javadoc @SuppressWarnings("unchecked") @Override public V2 get(Object key) { V1 value = fromMap.get(key); return (value != null || fromMap.containsKey(key)) ? transformer.transformEntry((K) key, value) : null; } // safe as long as the user followed the <b>Warning</b> in the javadoc @SuppressWarnings("unchecked") @Override public V2 remove(Object key) { return fromMap.containsKey(key) ? transformer.transformEntry((K) key, fromMap.remove(key)) : null; } @Override public void clear() { fromMap.clear(); } @Override public Set<K> keySet() { return fromMap.keySet(); } @Override protected Set<Entry<K, V2>> createEntrySet() { return new EntrySet<K, V2>() { @Override Map<K, V2> map() { return TransformedEntriesMap.this; } @Override public Iterator<Entry<K, V2>> iterator() { return Iterators.transform(fromMap.entrySet().iterator(), Maps.<K, V1, V2>asEntryToEntryFunction(transformer)); } }; } } static class TransformedEntriesSortedMap<K, V1, V2> extends TransformedEntriesMap<K, V1, V2> implements SortedMap<K, V2> { protected SortedMap<K, V1> fromMap() { return (SortedMap<K, V1>) fromMap; } TransformedEntriesSortedMap(SortedMap<K, V1> fromMap, EntryTransformer<? super K, ? super V1, V2> transformer) { super(fromMap, transformer); } @Override public Comparator<? super K> comparator() { return fromMap().comparator(); } @Override public K firstKey() { return fromMap().firstKey(); } @Override public SortedMap<K, V2> headMap(K toKey) { return transformEntries(fromMap().headMap(toKey), transformer); } @Override public K lastKey() { return fromMap().lastKey(); } @Override public SortedMap<K, V2> subMap(K fromKey, K toKey) { return transformEntries( fromMap().subMap(fromKey, toKey), transformer); } @Override public SortedMap<K, V2> tailMap(K fromKey) { return transformEntries(fromMap().tailMap(fromKey), transformer); } } @GwtIncompatible("NavigableMap") private static class TransformedEntriesNavigableMap<K, V1, V2> extends TransformedEntriesSortedMap<K, V1, V2> implements NavigableMap<K, V2> { TransformedEntriesNavigableMap(NavigableMap<K, V1> fromMap, EntryTransformer<? super K, ? super V1, V2> transformer) { super(fromMap, transformer); } @Override public Entry<K, V2> ceilingEntry(K key) { return transformEntry(fromMap().ceilingEntry(key)); } @Override public K ceilingKey(K key) { return fromMap().ceilingKey(key); } @Override public NavigableSet<K> descendingKeySet() { return fromMap().descendingKeySet(); } @Override public NavigableMap<K, V2> descendingMap() { return transformEntries(fromMap().descendingMap(), transformer); } @Override public Entry<K, V2> firstEntry() { return transformEntry(fromMap().firstEntry()); } @Override public Entry<K, V2> floorEntry(K key) { return transformEntry(fromMap().floorEntry(key)); } @Override public K floorKey(K key) { return fromMap().floorKey(key); } @Override public NavigableMap<K, V2> headMap(K toKey) { return headMap(toKey, false); } @Override public NavigableMap<K, V2> headMap(K toKey, boolean inclusive) { return transformEntries( fromMap().headMap(toKey, inclusive), transformer); } @Override public Entry<K, V2> higherEntry(K key) { return transformEntry(fromMap().higherEntry(key)); } @Override public K higherKey(K key) { return fromMap().higherKey(key); } @Override public Entry<K, V2> lastEntry() { return transformEntry(fromMap().lastEntry()); } @Override public Entry<K, V2> lowerEntry(K key) { return transformEntry(fromMap().lowerEntry(key)); } @Override public K lowerKey(K key) { return fromMap().lowerKey(key); } @Override public NavigableSet<K> navigableKeySet() { return fromMap().navigableKeySet(); } @Override public Entry<K, V2> pollFirstEntry() { return transformEntry(fromMap().pollFirstEntry()); } @Override public Entry<K, V2> pollLastEntry() { return transformEntry(fromMap().pollLastEntry()); } @Override public NavigableMap<K, V2> subMap( K fromKey, boolean fromInclusive, K toKey, boolean toInclusive) { return transformEntries( fromMap().subMap(fromKey, fromInclusive, toKey, toInclusive), transformer); } @Override public NavigableMap<K, V2> subMap(K fromKey, K toKey) { return subMap(fromKey, true, toKey, false); } @Override public NavigableMap<K, V2> tailMap(K fromKey) { return tailMap(fromKey, true); } @Override public NavigableMap<K, V2> tailMap(K fromKey, boolean inclusive) { return transformEntries( fromMap().tailMap(fromKey, inclusive), transformer); } @Nullable private Entry<K, V2> transformEntry(@Nullable Entry<K, V1> entry) { return (entry == null) ? null : Maps.transformEntry(transformer, entry); } @Override protected NavigableMap<K, V1> fromMap() { return (NavigableMap<K, V1>) super.fromMap(); } } static <K> Predicate<Entry<K, ?>> keyPredicateOnEntries(Predicate<? super K> keyPredicate) { return compose(keyPredicate, Maps.<K>keyFunction()); } static <V> Predicate<Entry<?, V>> valuePredicateOnEntries(Predicate<? super V> valuePredicate) { return compose(valuePredicate, Maps.<V>valueFunction()); } /** * Returns a map containing the mappings in {@code unfiltered} whose keys * satisfy a predicate. The returned map is a live view of {@code unfiltered}; * changes to one affect the other. * * <p>The resulting map's {@code keySet()}, {@code entrySet()}, and {@code * values()} views have iterators that don't support {@code remove()}, but all * other methods are supported by the map and its views. When given a key that * doesn't satisfy the predicate, the map's {@code put()} and {@code putAll()} * methods throw an {@link IllegalArgumentException}. * * <p>When methods such as {@code removeAll()} and {@code clear()} are called * on the filtered map or its views, only mappings whose keys satisfy the * filter will be removed from the underlying map. * * <p>The returned map isn't threadsafe or serializable, even if {@code * unfiltered} is. * * <p>Many of the filtered map's methods, such as {@code size()}, * iterate across every key/value mapping in the underlying map and determine * which satisfy the filter. When a live view is <i>not</i> needed, it may be * faster to copy the filtered map and use the copy. * * <p><b>Warning:</b> {@code keyPredicate} must be <i>consistent with * equals</i>, as documented at {@link Predicate#apply}. Do not provide a * predicate such as {@code Predicates.instanceOf(ArrayList.class)}, which is * inconsistent with equals. */ public static <K, V> Map<K, V> filterKeys( Map<K, V> unfiltered, final Predicate<? super K> keyPredicate) { if (unfiltered instanceof SortedMap) { return filterKeys((SortedMap<K, V>) unfiltered, keyPredicate); } else if (unfiltered instanceof BiMap) { return filterKeys((BiMap<K, V>) unfiltered, keyPredicate); } checkNotNull(keyPredicate); Predicate<Entry<K, ?>> entryPredicate = keyPredicateOnEntries(keyPredicate); return (unfiltered instanceof AbstractFilteredMap) ? filterFiltered((AbstractFilteredMap<K, V>) unfiltered, entryPredicate) : new FilteredKeyMap<K, V>( checkNotNull(unfiltered), keyPredicate, entryPredicate); } /** * Returns a sorted map containing the mappings in {@code unfiltered} whose * keys satisfy a predicate. The returned map is a live view of {@code * unfiltered}; changes to one affect the other. * * <p>The resulting map's {@code keySet()}, {@code entrySet()}, and {@code * values()} views have iterators that don't support {@code remove()}, but all * other methods are supported by the map and its views. When given a key that * doesn't satisfy the predicate, the map's {@code put()} and {@code putAll()} * methods throw an {@link IllegalArgumentException}. * * <p>When methods such as {@code removeAll()} and {@code clear()} are called * on the filtered map or its views, only mappings whose keys satisfy the * filter will be removed from the underlying map. * * <p>The returned map isn't threadsafe or serializable, even if {@code * unfiltered} is. * * <p>Many of the filtered map's methods, such as {@code size()}, * iterate across every key/value mapping in the underlying map and determine * which satisfy the filter. When a live view is <i>not</i> needed, it may be * faster to copy the filtered map and use the copy. * * <p><b>Warning:</b> {@code keyPredicate} must be <i>consistent with * equals</i>, as documented at {@link Predicate#apply}. Do not provide a * predicate such as {@code Predicates.instanceOf(ArrayList.class)}, which is * inconsistent with equals. * * @since 11.0 */ public static <K, V> SortedMap<K, V> filterKeys( SortedMap<K, V> unfiltered, final Predicate<? super K> keyPredicate) { // TODO(user): Return a subclass of Maps.FilteredKeyMap for slightly better // performance. return filterEntries(unfiltered, Maps.<K>keyPredicateOnEntries(keyPredicate)); } /** * Returns a navigable map containing the mappings in {@code unfiltered} whose * keys satisfy a predicate. The returned map is a live view of {@code * unfiltered}; changes to one affect the other. * * <p>The resulting map's {@code keySet()}, {@code entrySet()}, and {@code * values()} views have iterators that don't support {@code remove()}, but all * other methods are supported by the map and its views. When given a key that * doesn't satisfy the predicate, the map's {@code put()} and {@code putAll()} * methods throw an {@link IllegalArgumentException}. * * <p>When methods such as {@code removeAll()} and {@code clear()} are called * on the filtered map or its views, only mappings whose keys satisfy the * filter will be removed from the underlying map. * * <p>The returned map isn't threadsafe or serializable, even if {@code * unfiltered} is. * * <p>Many of the filtered map's methods, such as {@code size()}, * iterate across every key/value mapping in the underlying map and determine * which satisfy the filter. When a live view is <i>not</i> needed, it may be * faster to copy the filtered map and use the copy. * * <p><b>Warning:</b> {@code keyPredicate} must be <i>consistent with * equals</i>, as documented at {@link Predicate#apply}. Do not provide a * predicate such as {@code Predicates.instanceOf(ArrayList.class)}, which is * inconsistent with equals. * * @since 14.0 */ @GwtIncompatible("NavigableMap") public static <K, V> NavigableMap<K, V> filterKeys( NavigableMap<K, V> unfiltered, final Predicate<? super K> keyPredicate) { // TODO(user): Return a subclass of Maps.FilteredKeyMap for slightly better // performance. return filterEntries(unfiltered, Maps.<K>keyPredicateOnEntries(keyPredicate)); } /** * Returns a bimap containing the mappings in {@code unfiltered} whose keys satisfy a predicate. * The returned bimap is a live view of {@code unfiltered}; changes to one affect the other. * * <p>The resulting bimap's {@code keySet()}, {@code entrySet()}, and {@code values()} views have * iterators that don't support {@code remove()}, but all other methods are supported by the * bimap and its views. When given a key that doesn't satisfy the predicate, the bimap's {@code * put()}, {@code forcePut()} and {@code putAll()} methods throw an {@link * IllegalArgumentException}. * * <p>When methods such as {@code removeAll()} and {@code clear()} are called on the filtered * bimap or its views, only mappings that satisfy the filter will be removed from the underlying * bimap. * * <p>The returned bimap isn't threadsafe or serializable, even if {@code unfiltered} is. * * <p>Many of the filtered bimap's methods, such as {@code size()}, iterate across every key in * the underlying bimap and determine which satisfy the filter. When a live view is <i>not</i> * needed, it may be faster to copy the filtered bimap and use the copy. * * <p><b>Warning:</b> {@code entryPredicate} must be <i>consistent with equals </i>, as * documented at {@link Predicate#apply}. * * @since 14.0 */ public static <K, V> BiMap<K, V> filterKeys( BiMap<K, V> unfiltered, final Predicate<? super K> keyPredicate) { checkNotNull(keyPredicate); return filterEntries(unfiltered, Maps.<K>keyPredicateOnEntries(keyPredicate)); } /** * Returns a map containing the mappings in {@code unfiltered} whose values * satisfy a predicate. The returned map is a live view of {@code unfiltered}; * changes to one affect the other. * * <p>The resulting map's {@code keySet()}, {@code entrySet()}, and {@code * values()} views have iterators that don't support {@code remove()}, but all * other methods are supported by the map and its views. When given a value * that doesn't satisfy the predicate, the map's {@code put()}, {@code * putAll()}, and {@link Entry#setValue} methods throw an {@link * IllegalArgumentException}. * * <p>When methods such as {@code removeAll()} and {@code clear()} are called * on the filtered map or its views, only mappings whose values satisfy the * filter will be removed from the underlying map. * * <p>The returned map isn't threadsafe or serializable, even if {@code * unfiltered} is. * * <p>Many of the filtered map's methods, such as {@code size()}, * iterate across every key/value mapping in the underlying map and determine * which satisfy the filter. When a live view is <i>not</i> needed, it may be * faster to copy the filtered map and use the copy. * * <p><b>Warning:</b> {@code valuePredicate} must be <i>consistent with * equals</i>, as documented at {@link Predicate#apply}. Do not provide a * predicate such as {@code Predicates.instanceOf(ArrayList.class)}, which is * inconsistent with equals. */ public static <K, V> Map<K, V> filterValues( Map<K, V> unfiltered, final Predicate<? super V> valuePredicate) { if (unfiltered instanceof SortedMap) { return filterValues((SortedMap<K, V>) unfiltered, valuePredicate); } else if (unfiltered instanceof BiMap) { return filterValues((BiMap<K, V>) unfiltered, valuePredicate); } return filterEntries(unfiltered, Maps.<V>valuePredicateOnEntries(valuePredicate)); } /** * Returns a sorted map containing the mappings in {@code unfiltered} whose * values satisfy a predicate. The returned map is a live view of {@code * unfiltered}; changes to one affect the other. * * <p>The resulting map's {@code keySet()}, {@code entrySet()}, and {@code * values()} views have iterators that don't support {@code remove()}, but all * other methods are supported by the map and its views. When given a value * that doesn't satisfy the predicate, the map's {@code put()}, {@code * putAll()}, and {@link Entry#setValue} methods throw an {@link * IllegalArgumentException}. * * <p>When methods such as {@code removeAll()} and {@code clear()} are called * on the filtered map or its views, only mappings whose values satisfy the * filter will be removed from the underlying map. * * <p>The returned map isn't threadsafe or serializable, even if {@code * unfiltered} is. * * <p>Many of the filtered map's methods, such as {@code size()}, * iterate across every key/value mapping in the underlying map and determine * which satisfy the filter. When a live view is <i>not</i> needed, it may be * faster to copy the filtered map and use the copy. * * <p><b>Warning:</b> {@code valuePredicate} must be <i>consistent with * equals</i>, as documented at {@link Predicate#apply}. Do not provide a * predicate such as {@code Predicates.instanceOf(ArrayList.class)}, which is * inconsistent with equals. * * @since 11.0 */ public static <K, V> SortedMap<K, V> filterValues( SortedMap<K, V> unfiltered, final Predicate<? super V> valuePredicate) { return filterEntries(unfiltered, Maps.<V>valuePredicateOnEntries(valuePredicate)); } /** * Returns a navigable map containing the mappings in {@code unfiltered} whose * values satisfy a predicate. The returned map is a live view of {@code * unfiltered}; changes to one affect the other. * * <p>The resulting map's {@code keySet()}, {@code entrySet()}, and {@code * values()} views have iterators that don't support {@code remove()}, but all * other methods are supported by the map and its views. When given a value * that doesn't satisfy the predicate, the map's {@code put()}, {@code * putAll()}, and {@link Entry#setValue} methods throw an {@link * IllegalArgumentException}. * * <p>When methods such as {@code removeAll()} and {@code clear()} are called * on the filtered map or its views, only mappings whose values satisfy the * filter will be removed from the underlying map. * * <p>The returned map isn't threadsafe or serializable, even if {@code * unfiltered} is. * * <p>Many of the filtered map's methods, such as {@code size()}, * iterate across every key/value mapping in the underlying map and determine * which satisfy the filter. When a live view is <i>not</i> needed, it may be * faster to copy the filtered map and use the copy. * * <p><b>Warning:</b> {@code valuePredicate} must be <i>consistent with * equals</i>, as documented at {@link Predicate#apply}. Do not provide a * predicate such as {@code Predicates.instanceOf(ArrayList.class)}, which is * inconsistent with equals. * * @since 14.0 */ @GwtIncompatible("NavigableMap") public static <K, V> NavigableMap<K, V> filterValues( NavigableMap<K, V> unfiltered, final Predicate<? super V> valuePredicate) { return filterEntries(unfiltered, Maps.<V>valuePredicateOnEntries(valuePredicate)); } /** * Returns a bimap containing the mappings in {@code unfiltered} whose values satisfy a * predicate. The returned bimap is a live view of {@code unfiltered}; changes to one affect the * other. * * <p>The resulting bimap's {@code keySet()}, {@code entrySet()}, and {@code values()} views have * iterators that don't support {@code remove()}, but all other methods are supported by the * bimap and its views. When given a value that doesn't satisfy the predicate, the bimap's * {@code put()}, {@code forcePut()} and {@code putAll()} methods throw an {@link * IllegalArgumentException}. Similarly, the map's entries have a {@link Entry#setValue} method * that throws an {@link IllegalArgumentException} when the provided value doesn't satisfy the * predicate. * * <p>When methods such as {@code removeAll()} and {@code clear()} are called on the filtered * bimap or its views, only mappings that satisfy the filter will be removed from the underlying * bimap. * * <p>The returned bimap isn't threadsafe or serializable, even if {@code unfiltered} is. * * <p>Many of the filtered bimap's methods, such as {@code size()}, iterate across every value in * the underlying bimap and determine which satisfy the filter. When a live view is <i>not</i> * needed, it may be faster to copy the filtered bimap and use the copy. * * <p><b>Warning:</b> {@code entryPredicate} must be <i>consistent with equals </i>, as * documented at {@link Predicate#apply}. * * @since 14.0 */ public static <K, V> BiMap<K, V> filterValues( BiMap<K, V> unfiltered, final Predicate<? super V> valuePredicate) { return filterEntries(unfiltered, Maps.<V>valuePredicateOnEntries(valuePredicate)); } /** * Returns a map containing the mappings in {@code unfiltered} that satisfy a * predicate. The returned map is a live view of {@code unfiltered}; changes * to one affect the other. * * <p>The resulting map's {@code keySet()}, {@code entrySet()}, and {@code * values()} views have iterators that don't support {@code remove()}, but all * other methods are supported by the map and its views. When given a * key/value pair that doesn't satisfy the predicate, the map's {@code put()} * and {@code putAll()} methods throw an {@link IllegalArgumentException}. * Similarly, the map's entries have a {@link Entry#setValue} method that * throws an {@link IllegalArgumentException} when the existing key and the * provided value don't satisfy the predicate. * * <p>When methods such as {@code removeAll()} and {@code clear()} are called * on the filtered map or its views, only mappings that satisfy the filter * will be removed from the underlying map. * * <p>The returned map isn't threadsafe or serializable, even if {@code * unfiltered} is. * * <p>Many of the filtered map's methods, such as {@code size()}, * iterate across every key/value mapping in the underlying map and determine * which satisfy the filter. When a live view is <i>not</i> needed, it may be * faster to copy the filtered map and use the copy. * * <p><b>Warning:</b> {@code entryPredicate} must be <i>consistent with * equals</i>, as documented at {@link Predicate#apply}. */ public static <K, V> Map<K, V> filterEntries( Map<K, V> unfiltered, Predicate<? super Entry<K, V>> entryPredicate) { if (unfiltered instanceof SortedMap) { return filterEntries((SortedMap<K, V>) unfiltered, entryPredicate); } else if (unfiltered instanceof BiMap) { return filterEntries((BiMap<K, V>) unfiltered, entryPredicate); } checkNotNull(entryPredicate); return (unfiltered instanceof AbstractFilteredMap) ? filterFiltered((AbstractFilteredMap<K, V>) unfiltered, entryPredicate) : new FilteredEntryMap<K, V>(checkNotNull(unfiltered), entryPredicate); } /** * Returns a sorted map containing the mappings in {@code unfiltered} that * satisfy a predicate. The returned map is a live view of {@code unfiltered}; * changes to one affect the other. * * <p>The resulting map's {@code keySet()}, {@code entrySet()}, and {@code * values()} views have iterators that don't support {@code remove()}, but all * other methods are supported by the map and its views. When given a * key/value pair that doesn't satisfy the predicate, the map's {@code put()} * and {@code putAll()} methods throw an {@link IllegalArgumentException}. * Similarly, the map's entries have a {@link Entry#setValue} method that * throws an {@link IllegalArgumentException} when the existing key and the * provided value don't satisfy the predicate. * * <p>When methods such as {@code removeAll()} and {@code clear()} are called * on the filtered map or its views, only mappings that satisfy the filter * will be removed from the underlying map. * * <p>The returned map isn't threadsafe or serializable, even if {@code * unfiltered} is. * * <p>Many of the filtered map's methods, such as {@code size()}, * iterate across every key/value mapping in the underlying map and determine * which satisfy the filter. When a live view is <i>not</i> needed, it may be * faster to copy the filtered map and use the copy. * * <p><b>Warning:</b> {@code entryPredicate} must be <i>consistent with * equals</i>, as documented at {@link Predicate#apply}. * * @since 11.0 */ public static <K, V> SortedMap<K, V> filterEntries( SortedMap<K, V> unfiltered, Predicate<? super Entry<K, V>> entryPredicate) { return Platform.mapsFilterSortedMap(unfiltered, entryPredicate); } static <K, V> SortedMap<K, V> filterSortedIgnoreNavigable( SortedMap<K, V> unfiltered, Predicate<? super Entry<K, V>> entryPredicate) { checkNotNull(entryPredicate); return (unfiltered instanceof FilteredEntrySortedMap) ? filterFiltered((FilteredEntrySortedMap<K, V>) unfiltered, entryPredicate) : new FilteredEntrySortedMap<K, V>(checkNotNull(unfiltered), entryPredicate); } /** * Returns a sorted map containing the mappings in {@code unfiltered} that * satisfy a predicate. The returned map is a live view of {@code unfiltered}; * changes to one affect the other. * * <p>The resulting map's {@code keySet()}, {@code entrySet()}, and {@code * values()} views have iterators that don't support {@code remove()}, but all * other methods are supported by the map and its views. When given a * key/value pair that doesn't satisfy the predicate, the map's {@code put()} * and {@code putAll()} methods throw an {@link IllegalArgumentException}. * Similarly, the map's entries have a {@link Entry#setValue} method that * throws an {@link IllegalArgumentException} when the existing key and the * provided value don't satisfy the predicate. * * <p>When methods such as {@code removeAll()} and {@code clear()} are called * on the filtered map or its views, only mappings that satisfy the filter * will be removed from the underlying map. * * <p>The returned map isn't threadsafe or serializable, even if {@code * unfiltered} is. * * <p>Many of the filtered map's methods, such as {@code size()}, * iterate across every key/value mapping in the underlying map and determine * which satisfy the filter. When a live view is <i>not</i> needed, it may be * faster to copy the filtered map and use the copy. * * <p><b>Warning:</b> {@code entryPredicate} must be <i>consistent with * equals</i>, as documented at {@link Predicate#apply}. * * @since 14.0 */ @GwtIncompatible("NavigableMap") public static <K, V> NavigableMap<K, V> filterEntries( NavigableMap<K, V> unfiltered, Predicate<? super Entry<K, V>> entryPredicate) { checkNotNull(entryPredicate); return (unfiltered instanceof FilteredEntryNavigableMap) ? filterFiltered((FilteredEntryNavigableMap<K, V>) unfiltered, entryPredicate) : new FilteredEntryNavigableMap<K, V>(checkNotNull(unfiltered), entryPredicate); } /** * Returns a bimap containing the mappings in {@code unfiltered} that satisfy a predicate. The * returned bimap is a live view of {@code unfiltered}; changes to one affect the other. * * <p>The resulting bimap's {@code keySet()}, {@code entrySet()}, and {@code values()} views have * iterators that don't support {@code remove()}, but all other methods are supported by the bimap * and its views. When given a key/value pair that doesn't satisfy the predicate, the bimap's * {@code put()}, {@code forcePut()} and {@code putAll()} methods throw an * {@link IllegalArgumentException}. Similarly, the map's entries have an {@link Entry#setValue} * method that throws an {@link IllegalArgumentException} when the existing key and the provided * value don't satisfy the predicate. * * <p>When methods such as {@code removeAll()} and {@code clear()} are called on the filtered * bimap or its views, only mappings that satisfy the filter will be removed from the underlying * bimap. * * <p>The returned bimap isn't threadsafe or serializable, even if {@code unfiltered} is. * * <p>Many of the filtered bimap's methods, such as {@code size()}, iterate across every * key/value mapping in the underlying bimap and determine which satisfy the filter. When a live * view is <i>not</i> needed, it may be faster to copy the filtered bimap and use the copy. * * <p><b>Warning:</b> {@code entryPredicate} must be <i>consistent with equals </i>, as * documented at {@link Predicate#apply}. * * @since 14.0 */ public static <K, V> BiMap<K, V> filterEntries( BiMap<K, V> unfiltered, Predicate<? super Entry<K, V>> entryPredicate) { checkNotNull(unfiltered); checkNotNull(entryPredicate); return (unfiltered instanceof FilteredEntryBiMap) ? filterFiltered((FilteredEntryBiMap<K, V>) unfiltered, entryPredicate) : new FilteredEntryBiMap<K, V>(unfiltered, entryPredicate); } /** * Support {@code clear()}, {@code removeAll()}, and {@code retainAll()} when * filtering a filtered map. */ private static <K, V> Map<K, V> filterFiltered(AbstractFilteredMap<K, V> map, Predicate<? super Entry<K, V>> entryPredicate) { return new FilteredEntryMap<K, V>(map.unfiltered, Predicates.<Entry<K, V>>and(map.predicate, entryPredicate)); } private abstract static class AbstractFilteredMap<K, V> extends ImprovedAbstractMap<K, V> { final Map<K, V> unfiltered; final Predicate<? super Entry<K, V>> predicate; AbstractFilteredMap( Map<K, V> unfiltered, Predicate<? super Entry<K, V>> predicate) { this.unfiltered = unfiltered; this.predicate = predicate; } boolean apply(@Nullable Object key, @Nullable V value) { // This method is called only when the key is in the map, implying that // key is a K. @SuppressWarnings("unchecked") K k = (K) key; return predicate.apply(Maps.immutableEntry(k, value)); } @Override public V put(K key, V value) { checkArgument(apply(key, value)); return unfiltered.put(key, value); } @Override public void putAll(Map<? extends K, ? extends V> map) { for (Entry<? extends K, ? extends V> entry : map.entrySet()) { checkArgument(apply(entry.getKey(), entry.getValue())); } unfiltered.putAll(map); } @Override public boolean containsKey(Object key) { return unfiltered.containsKey(key) && apply(key, unfiltered.get(key)); } @Override public V get(Object key) { V value = unfiltered.get(key); return ((value != null) && apply(key, value)) ? value : null; } @Override public boolean isEmpty() { return entrySet().isEmpty(); } @Override public V remove(Object key) { return containsKey(key) ? unfiltered.remove(key) : null; } @Override Collection<V> createValues() { return new FilteredMapValues<K, V>(this, unfiltered, predicate); } } private static final class FilteredMapValues<K, V> extends Maps.Values<K, V> { Map<K, V> unfiltered; Predicate<? super Entry<K, V>> predicate; FilteredMapValues(Map<K, V> filteredMap, Map<K, V> unfiltered, Predicate<? super Entry<K, V>> predicate) { super(filteredMap); this.unfiltered = unfiltered; this.predicate = predicate; } @Override public boolean remove(Object o) { return Iterables.removeFirstMatching(unfiltered.entrySet(), Predicates.<Entry<K, V>>and(predicate, Maps.<V>valuePredicateOnEntries(equalTo(o)))) != null; } private boolean removeIf(Predicate<? super V> valuePredicate) { return Iterables.removeIf(unfiltered.entrySet(), Predicates.<Entry<K, V>>and( predicate, Maps.<V>valuePredicateOnEntries(valuePredicate))); } @Override public boolean removeAll(Collection<?> collection) { return removeIf(in(collection)); } @Override public boolean retainAll(Collection<?> collection) { return removeIf(not(in(collection))); } @Override public Object[] toArray() { // creating an ArrayList so filtering happens once return Lists.newArrayList(iterator()).toArray(); } @Override public <T> T[] toArray(T[] array) { return Lists.newArrayList(iterator()).toArray(array); } } private static class FilteredKeyMap<K, V> extends AbstractFilteredMap<K, V> { Predicate<? super K> keyPredicate; FilteredKeyMap(Map<K, V> unfiltered, Predicate<? super K> keyPredicate, Predicate<? super Entry<K, V>> entryPredicate) { super(unfiltered, entryPredicate); this.keyPredicate = keyPredicate; } @Override protected Set<Entry<K, V>> createEntrySet() { return Sets.filter(unfiltered.entrySet(), predicate); } @Override Set<K> createKeySet() { return Sets.filter(unfiltered.keySet(), keyPredicate); } // The cast is called only when the key is in the unfiltered map, implying // that key is a K. @Override @SuppressWarnings("unchecked") public boolean containsKey(Object key) { return unfiltered.containsKey(key) && keyPredicate.apply((K) key); } } static class FilteredEntryMap<K, V> extends AbstractFilteredMap<K, V> { /** * Entries in this set satisfy the predicate, but they don't validate the * input to {@code Entry.setValue()}. */ final Set<Entry<K, V>> filteredEntrySet; FilteredEntryMap( Map<K, V> unfiltered, Predicate<? super Entry<K, V>> entryPredicate) { super(unfiltered, entryPredicate); filteredEntrySet = Sets.filter(unfiltered.entrySet(), predicate); } @Override protected Set<Entry<K, V>> createEntrySet() { return new EntrySet(); } private class EntrySet extends ForwardingSet<Entry<K, V>> { @Override protected Set<Entry<K, V>> delegate() { return filteredEntrySet; } @Override public Iterator<Entry<K, V>> iterator() { return new TransformedIterator<Entry<K, V>, Entry<K, V>>(filteredEntrySet.iterator()) { @Override Entry<K, V> transform(final Entry<K, V> entry) { return new ForwardingMapEntry<K, V>() { @Override protected Entry<K, V> delegate() { return entry; } @Override public V setValue(V newValue) { checkArgument(apply(getKey(), newValue)); return super.setValue(newValue); } }; } }; } } @Override Set<K> createKeySet() { return new KeySet(); } class KeySet extends Maps.KeySet<K, V> { KeySet() { super(FilteredEntryMap.this); } @Override public boolean remove(Object o) { if (containsKey(o)) { unfiltered.remove(o); return true; } return false; } private boolean removeIf(Predicate<? super K> keyPredicate) { return Iterables.removeIf(unfiltered.entrySet(), Predicates.<Entry<K, V>>and( predicate, Maps.<K>keyPredicateOnEntries(keyPredicate))); } @Override public boolean removeAll(Collection<?> c) { return removeIf(in(c)); } @Override public boolean retainAll(Collection<?> c) { return removeIf(not(in(c))); } @Override public Object[] toArray() { // creating an ArrayList so filtering happens once return Lists.newArrayList(iterator()).toArray(); } @Override public <T> T[] toArray(T[] array) { return Lists.newArrayList(iterator()).toArray(array); } } } /** * Support {@code clear()}, {@code removeAll()}, and {@code retainAll()} when * filtering a filtered sorted map. */ private static <K, V> SortedMap<K, V> filterFiltered( FilteredEntrySortedMap<K, V> map, Predicate<? super Entry<K, V>> entryPredicate) { Predicate<Entry<K, V>> predicate = Predicates.and(map.predicate, entryPredicate); return new FilteredEntrySortedMap<K, V>(map.sortedMap(), predicate); } private static class FilteredEntrySortedMap<K, V> extends FilteredEntryMap<K, V> implements SortedMap<K, V> { FilteredEntrySortedMap(SortedMap<K, V> unfiltered, Predicate<? super Entry<K, V>> entryPredicate) { super(unfiltered, entryPredicate); } SortedMap<K, V> sortedMap() { return (SortedMap<K, V>) unfiltered; } @Override public SortedSet<K> keySet() { return (SortedSet<K>) super.keySet(); } @Override SortedSet<K> createKeySet() { return new SortedKeySet(); } class SortedKeySet extends KeySet implements SortedSet<K> { @Override public Comparator<? super K> comparator() { return sortedMap().comparator(); } @Override public SortedSet<K> subSet(K fromElement, K toElement) { return (SortedSet<K>) subMap(fromElement, toElement).keySet(); } @Override public SortedSet<K> headSet(K toElement) { return (SortedSet<K>) headMap(toElement).keySet(); } @Override public SortedSet<K> tailSet(K fromElement) { return (SortedSet<K>) tailMap(fromElement).keySet(); } @Override public K first() { return firstKey(); } @Override public K last() { return lastKey(); } } @Override public Comparator<? super K> comparator() { return sortedMap().comparator(); } @Override public K firstKey() { // correctly throws NoSuchElementException when filtered map is empty. return keySet().iterator().next(); } @Override public K lastKey() { SortedMap<K, V> headMap = sortedMap(); while (true) { // correctly throws NoSuchElementException when filtered map is empty. K key = headMap.lastKey(); if (apply(key, unfiltered.get(key))) { return key; } headMap = sortedMap().headMap(key); } } @Override public SortedMap<K, V> headMap(K toKey) { return new FilteredEntrySortedMap<K, V>(sortedMap().headMap(toKey), predicate); } @Override public SortedMap<K, V> subMap(K fromKey, K toKey) { return new FilteredEntrySortedMap<K, V>( sortedMap().subMap(fromKey, toKey), predicate); } @Override public SortedMap<K, V> tailMap(K fromKey) { return new FilteredEntrySortedMap<K, V>( sortedMap().tailMap(fromKey), predicate); } } /** * Support {@code clear()}, {@code removeAll()}, and {@code retainAll()} when * filtering a filtered navigable map. */ @GwtIncompatible("NavigableMap") private static <K, V> NavigableMap<K, V> filterFiltered( FilteredEntryNavigableMap<K, V> map, Predicate<? super Entry<K, V>> entryPredicate) { Predicate<Entry<K, V>> predicate = Predicates.and(map.entryPredicate, entryPredicate); return new FilteredEntryNavigableMap<K, V>(map.unfiltered, predicate); } @GwtIncompatible("NavigableMap") private static class FilteredEntryNavigableMap<K, V> extends AbstractNavigableMap<K, V> { /* * It's less code to extend AbstractNavigableMap and forward the filtering logic to * FilteredEntryMap than to extend FilteredEntrySortedMap and reimplement all the NavigableMap * methods. */ private final NavigableMap<K, V> unfiltered; private final Predicate<? super Entry<K, V>> entryPredicate; private final Map<K, V> filteredDelegate; FilteredEntryNavigableMap( NavigableMap<K, V> unfiltered, Predicate<? super Entry<K, V>> entryPredicate) { this.unfiltered = checkNotNull(unfiltered); this.entryPredicate = entryPredicate; this.filteredDelegate = new FilteredEntryMap<K, V>(unfiltered, entryPredicate); } @Override public Comparator<? super K> comparator() { return unfiltered.comparator(); } @Override public NavigableSet<K> navigableKeySet() { return new Maps.NavigableKeySet<K, V>(this) { @Override public boolean removeAll(Collection<?> c) { return Iterators.removeIf(unfiltered.entrySet().iterator(), Predicates.<Entry<K, V>>and(entryPredicate, Maps.<K>keyPredicateOnEntries(in(c)))); } @Override public boolean retainAll(Collection<?> c) { return Iterators.removeIf(unfiltered.entrySet().iterator(), Predicates.<Entry<K, V>>and( entryPredicate, Maps.<K>keyPredicateOnEntries(not(in(c))))); } }; } @Override public Collection<V> values() { return new FilteredMapValues<K, V>(this, unfiltered, entryPredicate); } @Override Iterator<Entry<K, V>> entryIterator() { return Iterators.filter(unfiltered.entrySet().iterator(), entryPredicate); } @Override Iterator<Entry<K, V>> descendingEntryIterator() { return Iterators.filter(unfiltered.descendingMap().entrySet().iterator(), entryPredicate); } @Override public int size() { return filteredDelegate.size(); } @Override public boolean isEmpty() { return !Iterables.any(unfiltered.entrySet(), entryPredicate); } @Override @Nullable public V get(@Nullable Object key) { return filteredDelegate.get(key); } @Override public boolean containsKey(@Nullable Object key) { return filteredDelegate.containsKey(key); } @Override public V put(K key, V value) { return filteredDelegate.put(key, value); } @Override public V remove(@Nullable Object key) { return filteredDelegate.remove(key); } @Override public void putAll(Map<? extends K, ? extends V> m) { filteredDelegate.putAll(m); } @Override public void clear() { filteredDelegate.clear(); } @Override public Set<Entry<K, V>> entrySet() { return filteredDelegate.entrySet(); } @Override public Entry<K, V> pollFirstEntry() { return Iterables.removeFirstMatching(unfiltered.entrySet(), entryPredicate); } @Override public Entry<K, V> pollLastEntry() { return Iterables.removeFirstMatching(unfiltered.descendingMap().entrySet(), entryPredicate); } @Override public NavigableMap<K, V> descendingMap() { return filterEntries(unfiltered.descendingMap(), entryPredicate); } @Override public NavigableMap<K, V> subMap( K fromKey, boolean fromInclusive, K toKey, boolean toInclusive) { return filterEntries( unfiltered.subMap(fromKey, fromInclusive, toKey, toInclusive), entryPredicate); } @Override public NavigableMap<K, V> headMap(K toKey, boolean inclusive) { return filterEntries(unfiltered.headMap(toKey, inclusive), entryPredicate); } @Override public NavigableMap<K, V> tailMap(K fromKey, boolean inclusive) { return filterEntries(unfiltered.tailMap(fromKey, inclusive), entryPredicate); } } /** * Support {@code clear()}, {@code removeAll()}, and {@code retainAll()} when * filtering a filtered map. */ private static <K, V> BiMap<K, V> filterFiltered( FilteredEntryBiMap<K, V> map, Predicate<? super Entry<K, V>> entryPredicate) { Predicate<Entry<K, V>> predicate = Predicates.and(map.predicate, entryPredicate); return new FilteredEntryBiMap<K, V>(map.unfiltered(), predicate); } static final class FilteredEntryBiMap<K, V> extends FilteredEntryMap<K, V> implements BiMap<K, V> { private final BiMap<V, K> inverse; private static <K, V> Predicate<Entry<V, K>> inversePredicate( final Predicate<? super Entry<K, V>> forwardPredicate) { return new Predicate<Entry<V, K>>() { @Override public boolean apply(Entry<V, K> input) { return forwardPredicate.apply( Maps.immutableEntry(input.getValue(), input.getKey())); } }; } FilteredEntryBiMap(BiMap<K, V> delegate, Predicate<? super Entry<K, V>> predicate) { super(delegate, predicate); this.inverse = new FilteredEntryBiMap<V, K>( delegate.inverse(), inversePredicate(predicate), this); } private FilteredEntryBiMap( BiMap<K, V> delegate, Predicate<? super Entry<K, V>> predicate, BiMap<V, K> inverse) { super(delegate, predicate); this.inverse = inverse; } BiMap<K, V> unfiltered() { return (BiMap<K, V>) unfiltered; } @Override public V forcePut(@Nullable K key, @Nullable V value) { checkArgument(apply(key, value)); return unfiltered().forcePut(key, value); } @Override public BiMap<V, K> inverse() { return inverse; } @Override public Set<V> values() { return inverse.keySet(); } } /** * Returns an unmodifiable view of the specified navigable map. Query operations on the returned * map read through to the specified map, and attempts to modify the returned map, whether direct * or via its views, result in an {@code UnsupportedOperationException}. * * <p>The returned navigable map will be serializable if the specified navigable map is * serializable. * * @param map the navigable map for which an unmodifiable view is to be returned * @return an unmodifiable view of the specified navigable map * @since 12.0 */ @GwtIncompatible("NavigableMap") public static <K, V> NavigableMap<K, V> unmodifiableNavigableMap(NavigableMap<K, V> map) { checkNotNull(map); if (map instanceof UnmodifiableNavigableMap) { return map; } else { return new UnmodifiableNavigableMap<K, V>(map); } } @Nullable private static <K, V> Entry<K, V> unmodifiableOrNull(@Nullable Entry<K, V> entry) { return (entry == null) ? null : Maps.unmodifiableEntry(entry); } @GwtIncompatible("NavigableMap") static class UnmodifiableNavigableMap<K, V> extends ForwardingSortedMap<K, V> implements NavigableMap<K, V>, Serializable { private final NavigableMap<K, V> delegate; UnmodifiableNavigableMap(NavigableMap<K, V> delegate) { this.delegate = delegate; } UnmodifiableNavigableMap( NavigableMap<K, V> delegate, UnmodifiableNavigableMap<K, V> descendingMap) { this.delegate = delegate; this.descendingMap = descendingMap; } @Override protected SortedMap<K, V> delegate() { return Collections.unmodifiableSortedMap(delegate); } @Override public Entry<K, V> lowerEntry(K key) { return unmodifiableOrNull(delegate.lowerEntry(key)); } @Override public K lowerKey(K key) { return delegate.lowerKey(key); } @Override public Entry<K, V> floorEntry(K key) { return unmodifiableOrNull(delegate.floorEntry(key)); } @Override public K floorKey(K key) { return delegate.floorKey(key); } @Override public Entry<K, V> ceilingEntry(K key) { return unmodifiableOrNull(delegate.ceilingEntry(key)); } @Override public K ceilingKey(K key) { return delegate.ceilingKey(key); } @Override public Entry<K, V> higherEntry(K key) { return unmodifiableOrNull(delegate.higherEntry(key)); } @Override public K higherKey(K key) { return delegate.higherKey(key); } @Override public Entry<K, V> firstEntry() { return unmodifiableOrNull(delegate.firstEntry()); } @Override public Entry<K, V> lastEntry() { return unmodifiableOrNull(delegate.lastEntry()); } @Override public final Entry<K, V> pollFirstEntry() { throw new UnsupportedOperationException(); } @Override public final Entry<K, V> pollLastEntry() { throw new UnsupportedOperationException(); } private transient UnmodifiableNavigableMap<K, V> descendingMap; @Override public NavigableMap<K, V> descendingMap() { UnmodifiableNavigableMap<K, V> result = descendingMap; return (result == null) ? descendingMap = new UnmodifiableNavigableMap<K, V>(delegate.descendingMap(), this) : result; } @Override public Set<K> keySet() { return navigableKeySet(); } @Override public NavigableSet<K> navigableKeySet() { return Sets.unmodifiableNavigableSet(delegate.navigableKeySet()); } @Override public NavigableSet<K> descendingKeySet() { return Sets.unmodifiableNavigableSet(delegate.descendingKeySet()); } @Override public SortedMap<K, V> subMap(K fromKey, K toKey) { return subMap(fromKey, true, toKey, false); } @Override public SortedMap<K, V> headMap(K toKey) { return headMap(toKey, false); } @Override public SortedMap<K, V> tailMap(K fromKey) { return tailMap(fromKey, true); } @Override public NavigableMap<K, V> subMap(K fromKey, boolean fromInclusive, K toKey, boolean toInclusive) { return Maps.unmodifiableNavigableMap(delegate.subMap( fromKey, fromInclusive, toKey, toInclusive)); } @Override public NavigableMap<K, V> headMap(K toKey, boolean inclusive) { return Maps.unmodifiableNavigableMap(delegate.headMap(toKey, inclusive)); } @Override public NavigableMap<K, V> tailMap(K fromKey, boolean inclusive) { return Maps.unmodifiableNavigableMap(delegate.tailMap(fromKey, inclusive)); } } /** * Returns a synchronized (thread-safe) navigable map backed by the specified * navigable map. In order to guarantee serial access, it is critical that * <b>all</b> access to the backing navigable map is accomplished * through the returned navigable map (or its views). * * <p>It is imperative that the user manually synchronize on the returned * navigable map when iterating over any of its collection views, or the * collections views of any of its {@code descendingMap}, {@code subMap}, * {@code headMap} or {@code tailMap} views. <pre> {@code * * NavigableMap<K, V> map = synchronizedNavigableMap(new TreeMap<K, V>()); * * // Needn't be in synchronized block * NavigableSet<K> set = map.navigableKeySet(); * * synchronized (map) { // Synchronizing on map, not set! * Iterator<K> it = set.iterator(); // Must be in synchronized block * while (it.hasNext()) { * foo(it.next()); * } * }}</pre> * * <p>or: <pre> {@code * * NavigableMap<K, V> map = synchronizedNavigableMap(new TreeMap<K, V>()); * NavigableMap<K, V> map2 = map.subMap(foo, false, bar, true); * * // Needn't be in synchronized block * NavigableSet<K> set2 = map2.descendingKeySet(); * * synchronized (map) { // Synchronizing on map, not map2 or set2! * Iterator<K> it = set2.iterator(); // Must be in synchronized block * while (it.hasNext()) { * foo(it.next()); * } * }}</pre> * * <p>Failure to follow this advice may result in non-deterministic behavior. * * <p>The returned navigable map will be serializable if the specified * navigable map is serializable. * * @param navigableMap the navigable map to be "wrapped" in a synchronized * navigable map. * @return a synchronized view of the specified navigable map. * @since 13.0 */ @GwtIncompatible("NavigableMap") public static <K, V> NavigableMap<K, V> synchronizedNavigableMap( NavigableMap<K, V> navigableMap) { return Synchronized.navigableMap(navigableMap); } /** * {@code AbstractMap} extension that implements {@link #isEmpty()} as {@code * entrySet().isEmpty()} instead of {@code size() == 0} to speed up * implementations where {@code size()} is O(n), and it delegates the {@code * isEmpty()} methods of its key set and value collection to this * implementation. */ @GwtCompatible abstract static class ImprovedAbstractMap<K, V> extends AbstractMap<K, V> { /** * Creates the entry set to be returned by {@link #entrySet()}. This method * is invoked at most once on a given map, at the time when {@code entrySet} * is first called. */ abstract Set<Entry<K, V>> createEntrySet(); private transient Set<Entry<K, V>> entrySet; @Override public Set<Entry<K, V>> entrySet() { Set<Entry<K, V>> result = entrySet; return (result == null) ? entrySet = createEntrySet() : result; } private transient Set<K> keySet; @Override public Set<K> keySet() { Set<K> result = keySet; return (result == null) ? keySet = createKeySet() : result; } Set<K> createKeySet() { return new KeySet<K, V>(this); } private transient Collection<V> values; @Override public Collection<V> values() { Collection<V> result = values; return (result == null) ? values = createValues() : result; } Collection<V> createValues() { return new Values<K, V>(this); } } /** * Delegates to {@link Map#get}. Returns {@code null} on {@code * ClassCastException} and {@code NullPointerException}. */ static <V> V safeGet(Map<?, V> map, @Nullable Object key) { checkNotNull(map); try { return map.get(key); } catch (ClassCastException e) { return null; } catch (NullPointerException e) { return null; } } /** * Delegates to {@link Map#containsKey}. Returns {@code false} on {@code * ClassCastException} and {@code NullPointerException}. */ static boolean safeContainsKey(Map<?, ?> map, Object key) { checkNotNull(map); try { return map.containsKey(key); } catch (ClassCastException e) { return false; } catch (NullPointerException e) { return false; } } /** * Delegates to {@link Map#remove}. Returns {@code null} on {@code * ClassCastException} and {@code NullPointerException}. */ static <V> V safeRemove(Map<?, V> map, Object key) { checkNotNull(map); try { return map.remove(key); } catch (ClassCastException e) { return null; } catch (NullPointerException e) { return null; } } /** * An admittedly inefficient implementation of {@link Map#containsKey}. */ static boolean containsKeyImpl(Map<?, ?> map, @Nullable Object key) { return Iterators.contains(keyIterator(map.entrySet().iterator()), key); } /** * An implementation of {@link Map#containsValue}. */ static boolean containsValueImpl(Map<?, ?> map, @Nullable Object value) { return Iterators.contains(valueIterator(map.entrySet().iterator()), value); } /** * Implements {@code Collection.contains} safely for forwarding collections of * map entries. If {@code o} is an instance of {@code Map.Entry}, it is * wrapped using {@link #unmodifiableEntry} to protect against a possible * nefarious equals method. * * <p>Note that {@code c} is the backing (delegate) collection, rather than * the forwarding collection. * * @param c the delegate (unwrapped) collection of map entries * @param o the object that might be contained in {@code c} * @return {@code true} if {@code c} contains {@code o} */ static <K, V> boolean containsEntryImpl(Collection<Entry<K, V>> c, Object o) { if (!(o instanceof Entry)) { return false; } return c.contains(unmodifiableEntry((Entry<?, ?>) o)); } /** * Implements {@code Collection.remove} safely for forwarding collections of * map entries. If {@code o} is an instance of {@code Map.Entry}, it is * wrapped using {@link #unmodifiableEntry} to protect against a possible * nefarious equals method. * * <p>Note that {@code c} is backing (delegate) collection, rather than the * forwarding collection. * * @param c the delegate (unwrapped) collection of map entries * @param o the object to remove from {@code c} * @return {@code true} if {@code c} was changed */ static <K, V> boolean removeEntryImpl(Collection<Entry<K, V>> c, Object o) { if (!(o instanceof Entry)) { return false; } return c.remove(unmodifiableEntry((Entry<?, ?>) o)); } /** * An implementation of {@link Map#equals}. */ static boolean equalsImpl(Map<?, ?> map, Object object) { if (map == object) { return true; } else if (object instanceof Map) { Map<?, ?> o = (Map<?, ?>) object; return map.entrySet().equals(o.entrySet()); } return false; } static final MapJoiner STANDARD_JOINER = Collections2.STANDARD_JOINER.withKeyValueSeparator("="); /** * An implementation of {@link Map#toString}. */ static String toStringImpl(Map<?, ?> map) { StringBuilder sb = Collections2.newStringBuilderForCollection(map.size()).append('{'); STANDARD_JOINER.appendTo(sb, map); return sb.append('}').toString(); } /** * An implementation of {@link Map#putAll}. */ static <K, V> void putAllImpl( Map<K, V> self, Map<? extends K, ? extends V> map) { for (Map.Entry<? extends K, ? extends V> entry : map.entrySet()) { self.put(entry.getKey(), entry.getValue()); } } static class KeySet<K, V> extends Sets.ImprovedAbstractSet<K> { final Map<K, V> map; KeySet(Map<K, V> map) { this.map = checkNotNull(map); } Map<K, V> map() { return map; } @Override public Iterator<K> iterator() { return keyIterator(map().entrySet().iterator()); } @Override public int size() { return map().size(); } @Override public boolean isEmpty() { return map().isEmpty(); } @Override public boolean contains(Object o) { return map().containsKey(o); } @Override public boolean remove(Object o) { if (contains(o)) { map().remove(o); return true; } return false; } @Override public void clear() { map().clear(); } } @Nullable static <K> K keyOrNull(@Nullable Entry<K, ?> entry) { return (entry == null) ? null : entry.getKey(); } @Nullable static <V> V valueOrNull(@Nullable Entry<?, V> entry) { return (entry == null) ? null : entry.getValue(); } static class SortedKeySet<K, V> extends KeySet<K, V> implements SortedSet<K> { SortedKeySet(SortedMap<K, V> map) { super(map); } @Override SortedMap<K, V> map() { return (SortedMap<K, V>) super.map(); } @Override public Comparator<? super K> comparator() { return map().comparator(); } @Override public SortedSet<K> subSet(K fromElement, K toElement) { return new SortedKeySet<K, V>(map().subMap(fromElement, toElement)); } @Override public SortedSet<K> headSet(K toElement) { return new SortedKeySet<K, V>(map().headMap(toElement)); } @Override public SortedSet<K> tailSet(K fromElement) { return new SortedKeySet<K, V>(map().tailMap(fromElement)); } @Override public K first() { return map().firstKey(); } @Override public K last() { return map().lastKey(); } } @GwtIncompatible("NavigableMap") static class NavigableKeySet<K, V> extends SortedKeySet<K, V> implements NavigableSet<K> { NavigableKeySet(NavigableMap<K, V> map) { super(map); } @Override NavigableMap<K, V> map() { return (NavigableMap<K, V>) map; } @Override public K lower(K e) { return map().lowerKey(e); } @Override public K floor(K e) { return map().floorKey(e); } @Override public K ceiling(K e) { return map().ceilingKey(e); } @Override public K higher(K e) { return map().higherKey(e); } @Override public K pollFirst() { return keyOrNull(map().pollFirstEntry()); } @Override public K pollLast() { return keyOrNull(map().pollLastEntry()); } @Override public NavigableSet<K> descendingSet() { return map().descendingKeySet(); } @Override public Iterator<K> descendingIterator() { return descendingSet().iterator(); } @Override public NavigableSet<K> subSet( K fromElement, boolean fromInclusive, K toElement, boolean toInclusive) { return map().subMap(fromElement, fromInclusive, toElement, toInclusive).navigableKeySet(); } @Override public NavigableSet<K> headSet(K toElement, boolean inclusive) { return map().headMap(toElement, inclusive).navigableKeySet(); } @Override public NavigableSet<K> tailSet(K fromElement, boolean inclusive) { return map().tailMap(fromElement, inclusive).navigableKeySet(); } @Override public SortedSet<K> subSet(K fromElement, K toElement) { return subSet(fromElement, true, toElement, false); } @Override public SortedSet<K> headSet(K toElement) { return headSet(toElement, false); } @Override public SortedSet<K> tailSet(K fromElement) { return tailSet(fromElement, true); } } static class Values<K, V> extends AbstractCollection<V> { final Map<K, V> map; Values(Map<K, V> map) { this.map = checkNotNull(map); } final Map<K, V> map() { return map; } @Override public Iterator<V> iterator() { return valueIterator(map().entrySet().iterator()); } @Override public boolean remove(Object o) { try { return super.remove(o); } catch (UnsupportedOperationException e) { for (Entry<K, V> entry : map().entrySet()) { if (Objects.equal(o, entry.getValue())) { map().remove(entry.getKey()); return true; } } return false; } } @Override public boolean removeAll(Collection<?> c) { try { return super.removeAll(checkNotNull(c)); } catch (UnsupportedOperationException e) { Set<K> toRemove = Sets.newHashSet(); for (Entry<K, V> entry : map().entrySet()) { if (c.contains(entry.getValue())) { toRemove.add(entry.getKey()); } } return map().keySet().removeAll(toRemove); } } @Override public boolean retainAll(Collection<?> c) { try { return super.retainAll(checkNotNull(c)); } catch (UnsupportedOperationException e) { Set<K> toRetain = Sets.newHashSet(); for (Entry<K, V> entry : map().entrySet()) { if (c.contains(entry.getValue())) { toRetain.add(entry.getKey()); } } return map().keySet().retainAll(toRetain); } } @Override public int size() { return map().size(); } @Override public boolean isEmpty() { return map().isEmpty(); } @Override public boolean contains(@Nullable Object o) { return map().containsValue(o); } @Override public void clear() { map().clear(); } } abstract static class EntrySet<K, V> extends Sets.ImprovedAbstractSet<Entry<K, V>> { abstract Map<K, V> map(); @Override public int size() { return map().size(); } @Override public void clear() { map().clear(); } @Override public boolean contains(Object o) { if (o instanceof Entry) { Entry<?, ?> entry = (Entry<?, ?>) o; Object key = entry.getKey(); V value = Maps.safeGet(map(), key); return Objects.equal(value, entry.getValue()) && (value != null || map().containsKey(key)); } return false; } @Override public boolean isEmpty() { return map().isEmpty(); } @Override public boolean remove(Object o) { if (contains(o)) { Entry<?, ?> entry = (Entry<?, ?>) o; return map().keySet().remove(entry.getKey()); } return false; } @Override public boolean removeAll(Collection<?> c) { try { return super.removeAll(checkNotNull(c)); } catch (UnsupportedOperationException e) { // if the iterators don't support remove return Sets.removeAllImpl(this, c.iterator()); } } @Override public boolean retainAll(Collection<?> c) { try { return super.retainAll(checkNotNull(c)); } catch (UnsupportedOperationException e) { // if the iterators don't support remove Set<Object> keys = Sets.newHashSetWithExpectedSize(c.size()); for (Object o : c) { if (contains(o)) { Entry<?, ?> entry = (Entry<?, ?>) o; keys.add(entry.getKey()); } } return map().keySet().retainAll(keys); } } } @GwtIncompatible("NavigableMap") abstract static class DescendingMap<K, V> extends ForwardingMap<K, V> implements NavigableMap<K, V> { abstract NavigableMap<K, V> forward(); @Override protected final Map<K, V> delegate() { return forward(); } private transient Comparator<? super K> comparator; @SuppressWarnings("unchecked") @Override public Comparator<? super K> comparator() { Comparator<? super K> result = comparator; if (result == null) { Comparator<? super K> forwardCmp = forward().comparator(); if (forwardCmp == null) { forwardCmp = (Comparator) Ordering.natural(); } result = comparator = reverse(forwardCmp); } return result; } // If we inline this, we get a javac error. private static <T> Ordering<T> reverse(Comparator<T> forward) { return Ordering.from(forward).reverse(); } @Override public K firstKey() { return forward().lastKey(); } @Override public K lastKey() { return forward().firstKey(); } @Override public Entry<K, V> lowerEntry(K key) { return forward().higherEntry(key); } @Override public K lowerKey(K key) { return forward().higherKey(key); } @Override public Entry<K, V> floorEntry(K key) { return forward().ceilingEntry(key); } @Override public K floorKey(K key) { return forward().ceilingKey(key); } @Override public Entry<K, V> ceilingEntry(K key) { return forward().floorEntry(key); } @Override public K ceilingKey(K key) { return forward().floorKey(key); } @Override public Entry<K, V> higherEntry(K key) { return forward().lowerEntry(key); } @Override public K higherKey(K key) { return forward().lowerKey(key); } @Override public Entry<K, V> firstEntry() { return forward().lastEntry(); } @Override public Entry<K, V> lastEntry() { return forward().firstEntry(); } @Override public Entry<K, V> pollFirstEntry() { return forward().pollLastEntry(); } @Override public Entry<K, V> pollLastEntry() { return forward().pollFirstEntry(); } @Override public NavigableMap<K, V> descendingMap() { return forward(); } private transient Set<Entry<K, V>> entrySet; @Override public Set<Entry<K, V>> entrySet() { Set<Entry<K, V>> result = entrySet; return (result == null) ? entrySet = createEntrySet() : result; } abstract Iterator<Entry<K, V>> entryIterator(); Set<Entry<K, V>> createEntrySet() { return new EntrySet<K, V>() { @Override Map<K, V> map() { return DescendingMap.this; } @Override public Iterator<Entry<K, V>> iterator() { return entryIterator(); } }; } @Override public Set<K> keySet() { return navigableKeySet(); } private transient NavigableSet<K> navigableKeySet; @Override public NavigableSet<K> navigableKeySet() { NavigableSet<K> result = navigableKeySet; return (result == null) ? navigableKeySet = new NavigableKeySet<K, V>(this) : result; } @Override public NavigableSet<K> descendingKeySet() { return forward().navigableKeySet(); } @Override public NavigableMap<K, V> subMap(K fromKey, boolean fromInclusive, K toKey, boolean toInclusive) { return forward().subMap(toKey, toInclusive, fromKey, fromInclusive).descendingMap(); } @Override public NavigableMap<K, V> headMap(K toKey, boolean inclusive) { return forward().tailMap(toKey, inclusive).descendingMap(); } @Override public NavigableMap<K, V> tailMap(K fromKey, boolean inclusive) { return forward().headMap(fromKey, inclusive).descendingMap(); } @Override public SortedMap<K, V> subMap(K fromKey, K toKey) { return subMap(fromKey, true, toKey, false); } @Override public SortedMap<K, V> headMap(K toKey) { return headMap(toKey, false); } @Override public SortedMap<K, V> tailMap(K fromKey) { return tailMap(fromKey, true); } @Override public Collection<V> values() { return new Values<K, V>(this); } @Override public String toString() { return standardToString(); } } }