package net.glowstone.util.noise; import java.util.Random; /* * A speed-improved simplex noise algorithm * * Based on example code by Stefan Gustavson (stegu@itn.liu.se). * Optimisations by Peter Eastman (peastman@drizzle.stanford.edu). * Better rank ordering method by Stefan Gustavson in 2012. * * This could be speeded up even further, but it's useful as it is. * * Version 2012-03-09 */ public class SimplexNoise extends PerlinNoise { protected static final double SQRT_3 = Math.sqrt(3); protected static final double F2 = 0.5 * (SQRT_3 - 1); protected static final double G2 = (3 - SQRT_3) / 6; protected static final double G22 = G2 * 2.0 - 1; protected static final double F3 = 1.0 / 3.0; protected static final double G3 = 1.0 / 6.0; protected static final double G32 = G3 * 2.0; protected static final double G33 = G3 * 3.0 - 1.0; protected final int[] permMod12 = new int[512]; private static Grad[] grad3 = {new Grad(1, 1, 0), new Grad(-1, 1, 0), new Grad(1, -1, 0), new Grad(-1, -1, 0), new Grad(1, 0, 1), new Grad(-1, 0, 1), new Grad(1, 0, -1), new Grad(-1, 0, -1), new Grad(0, 1, 1), new Grad(0, -1, 1), new Grad(0, 1, -1), new Grad(0, -1, -1)}; public SimplexNoise(Random rand) { super(rand); for (int i = 0; i < 512; i++) { permMod12[i] = perm[i] % 12; } } public static int floor(double x) { return x > 0 ? (int) x : (int) x - 1; } protected static double dot(Grad g, double x, double y) { return g.x * x + g.y * y; } protected static double dot(Grad g, double x, double y, double z) { return g.x * x + g.y * y + g.z * z; } @Override protected double[] get2dNoise(double[] noise, double x, double z, int sizeX, int sizeY, double scaleX, double scaleY, double amplitude) { int index = 0; for (int i = 0; i < sizeY; i++) { double zin = offsetY + (z + i) * scaleY; for (int j = 0; j < sizeX; j++) { double xin = offsetX + (x + j) * scaleX; noise[index++] += simplex2D(xin, zin) * amplitude; } } return noise; } @Override protected double[] get3dNoise(double[] noise, double x, double y, double z, int sizeX, int sizeY, int sizeZ, double scaleX, double scaleY, double scaleZ, double amplitude) { int index = 0; for (int i = 0; i < sizeZ; i++) { double zin = offsetZ + (z + i) * scaleZ; for (int j = 0; j < sizeX; j++) { double xin = offsetX + (x + j) * scaleX; for (int k = 0; k < sizeY; k++) { double yin = offsetY + (y + k) * scaleY; noise[index++] += simplex3D(xin, yin, zin) * amplitude; } } } return noise; } @Override public double noise(double xin, double yin) { xin += offsetX; yin += offsetY; return simplex2D(xin, yin); } @Override public double noise(double xin, double yin, double zin) { xin += offsetX; yin += offsetY; zin += offsetZ; return simplex3D(xin, yin, zin); } private double simplex2D(double xin, double yin) { double n0, n1, n2; // Noise contributions from the three corners // Skew the input space to determine which simplex cell we're in double s = (xin + yin) * F2; // Hairy factor for 2D int i = floor(xin + s); int j = floor(yin + s); double t = (i + j) * G2; double dX0 = i - t; // Unskew the cell origin back to (x,y) space double dY0 = j - t; double x0 = xin - dX0; // The x,y distances from the cell origin double y0 = yin - dY0; // For the 2D case, the simplex shape is an equilateral triangle. // Determine which simplex we are in. int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords if (x0 > y0) { i1 = 1; // lower triangle, XY order: (0,0)->(1,0)->(1,1) j1 = 0; } else { i1 = 0; // upper triangle, YX order: (0,0)->(0,1)->(1,1) j1 = 1; } // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where // c = (3-sqrt(3))/6 double x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords double y1 = y0 - j1 + G2; double x2 = x0 + G22; // Offsets for last corner in (x,y) unskewed coords double y2 = y0 + G22; // Work out the hashed gradient indices of the three simplex corners int ii = i & 255; int jj = j & 255; int gi0 = permMod12[ii + perm[jj]]; int gi1 = permMod12[ii + i1 + perm[jj + j1]]; int gi2 = permMod12[ii + 1 + perm[jj + 1]]; // Calculate the contribution from the three corners double t0 = 0.5 - x0 * x0 - y0 * y0; if (t0 < 0) { n0 = 0.0; } else { t0 *= t0; n0 = t0 * t0 * dot(grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient } double t1 = 0.5 - x1 * x1 - y1 * y1; if (t1 < 0) { n1 = 0.0; } else { t1 *= t1; n1 = t1 * t1 * dot(grad3[gi1], x1, y1); } double t2 = 0.5 - x2 * x2 - y2 * y2; if (t2 < 0) { n2 = 0.0; } else { t2 *= t2; n2 = t2 * t2 * dot(grad3[gi2], x2, y2); } // Add contributions from each corner to get the final noise value. // The result is scaled to return values in the interval [-1,1]. return 70.0 * (n0 + n1 + n2); } private double simplex3D(double xin, double yin, double zin) { double n0, n1, n2, n3; // Noise contributions from the four corners // Skew the input space to determine which simplex cell we're in double s = (xin + yin + zin) * F3; // Very nice and simple skew factor for 3D int i = floor(xin + s); int j = floor(yin + s); int k = floor(zin + s); double t = (i + j + k) * G3; double dX0 = i - t; // Unskew the cell origin back to (x,y,z) space double dY0 = j - t; double dZ0 = k - t; double x0 = xin - dX0; // The x,y,z distances from the cell origin double y0 = yin - dY0; double z0 = zin - dZ0; // For the 3D case, the simplex shape is a slightly irregular tetrahedron. // Determine which simplex we are in. int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords if (x0 >= y0) { if (y0 >= z0) { i1 = 1; // X Y Z order j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } else if (x0 >= z0) { i1 = 1; // X Z Y order j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; } else { i1 = 0; // Z X Y order j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; } } else { // x0<y0 if (y0 < z0) { i1 = 0; // Z Y X order j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1; } else if (x0 < z0) { i1 = 0; // Y Z X order j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1; } else { i1 = 0; // Y X Z order j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } } // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z), // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where // c = 1/6. double x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords double y1 = y0 - j1 + G3; double z1 = z0 - k1 + G3; double x2 = x0 - i2 + G32; // Offsets for third corner in (x,y,z) coords double y2 = y0 - j2 + G32; double z2 = z0 - k2 + G32; double x3 = x0 + G33; // Offsets for last corner in (x,y,z) coords double y3 = y0 + G33; double z3 = z0 + G33; // Work out the hashed gradient indices of the four simplex corners int ii = i & 255; int jj = j & 255; int kk = k & 255; int gi0 = permMod12[ii + perm[jj + perm[kk]]]; int gi1 = permMod12[ii + i1 + perm[jj + j1 + perm[kk + k1]]]; int gi2 = permMod12[ii + i2 + perm[jj + j2 + perm[kk + k2]]]; int gi3 = permMod12[ii + 1 + perm[jj + 1 + perm[kk + 1]]]; // Calculate the contribution from the four corners double t0 = 0.5 - x0 * x0 - y0 * y0 - z0 * z0; if (t0 < 0) { n0 = 0.0; } else { t0 *= t0; n0 = t0 * t0 * dot(grad3[gi0], x0, y0, z0); } double t1 = 0.5 - x1 * x1 - y1 * y1 - z1 * z1; if (t1 < 0) { n1 = 0.0; } else { t1 *= t1; n1 = t1 * t1 * dot(grad3[gi1], x1, y1, z1); } double t2 = 0.5 - x2 * x2 - y2 * y2 - z2 * z2; if (t2 < 0) { n2 = 0.0; } else { t2 *= t2; n2 = t2 * t2 * dot(grad3[gi2], x2, y2, z2); } double t3 = 0.5 - x3 * x3 - y3 * y3 - z3 * z3; if (t3 < 0) { n3 = 0.0; } else { t3 *= t3; n3 = t3 * t3 * dot(grad3[gi3], x3, y3, z3); } // Add contributions from each corner to get the final noise value. // The result is scaled to stay just inside [-1,1] return 32.0 * (n0 + n1 + n2 + n3); } // Inner class to speed up gradient computations // (array access is a lot slower than member access) private static class Grad { public double x, y, z; Grad(double x, double y, double z) { this.x = x; this.y = y; this.z = z; } } }