package org.freehep.graphicsio.gif; // GifEncoder - write out an image as a GIF // // Transparency handling and variable bit size courtesy of Jack Palevich. // // Copyright (C)1996,1998 by Jef Poskanzer <jef@acme.com>. All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // 1. Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // 2. Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS // OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY // OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF // SUCH DAMAGE. // // Visit the ACME Labs Java page for up-to-date versions of this and other // fine Java utilities: http://www.acme.com/java/ //package Acme.JPM.Encoders; import java.awt.Image; import java.awt.image.ImageProducer; import java.io.DataOutput; import java.io.DataOutputStream; import java.io.IOException; import java.io.OutputStream; //import org.freehep.graphicsio.ImageEncoder; /// Write out an image as a GIF. // <P> // <A HREF="/resources/classes/Acme/JPM/Encoders/GifEncoder.java">Fetch the software.</A><BR> // <A HREF="/resources/classes/Acme.tar.gz">Fetch the entire Acme package.</A> // <P> // @see ToGif public class GIFEncoder extends ImageEncoder { private boolean interlace = false; private String comment = null; // / Constructor from Image. // @param img The image to encode. // @param out The stream to write the GIF to. public GIFEncoder(Image img, OutputStream out) throws IOException { this(img, out, false); } public GIFEncoder(Image img, DataOutput dos) throws IOException { this(img, dos, false); } // / Constructor from Image with interlace setting. // @param img The image to encode. // @param out The stream to write the GIF to. // @param interlace Whether to interlace. public GIFEncoder(Image img, OutputStream out, boolean interlace) throws IOException { this(img, (DataOutput) new DataOutputStream(out), interlace); } public GIFEncoder(Image img, DataOutput dos, boolean interlace) throws IOException { super(img, dos); this.interlace = interlace; } // / Constructor from ImageProducer. // @param prod The ImageProducer to encode. // @param out The stream to write the GIF to. public GIFEncoder(ImageProducer prod, OutputStream out) throws IOException { this(prod, out, false); } public GIFEncoder(ImageProducer prod, DataOutput dos) throws IOException { this(prod, dos, false); } // / Constructor from ImageProducer with interlace setting. // @param prod The ImageProducer to encode. // @param out The stream to write the GIF to. public GIFEncoder(ImageProducer prod, OutputStream out, boolean interlace) throws IOException { this(prod, (DataOutput) new DataOutputStream(out), interlace); } public GIFEncoder(ImageProducer prod, DataOutput dos, boolean interlace) throws IOException { super(prod, dos); this.interlace = interlace; } public void setComment(String comment) { this.comment = comment; } int width, height; int[][] rgbPixels; protected void encodeStart(int width, int height) throws IOException { this.width = width; this.height = height; rgbPixels = new int[height][width]; } protected void encodePixels(int x, int y, int w, int h, int[] rgbPixels, int off, int scansize) throws IOException { // Save the pixels. for (int row = 0; row < h; ++row) { System.arraycopy(rgbPixels, row * scansize + off, this.rgbPixels[y + row], x, w); } } protected void encodeDone() throws IOException { // MD: added ColorMap for max color limitation // returning a color palette (including one transparent color) // and rgbPixels changes from colors into palette indices. // GIFColorMap colorMap = new GIFNearestColorMap(); // GIFColorMap colorMap = new GIFPlainColorMap(); GIFColorMap colorMap = new GIFNeuralColorMap(); int[] palette = colorMap.create(rgbPixels, 255); // MD: look for first fully transparent color int transparentIndex = -1; for (int i=0; i<palette.length; i++) { if ((palette[i] & 0xFF000000) == 0) { transparentIndex = i; break; } } /* for (int i=0; i<palette.length; i++) { System.err.print(Integer.toHexString(palette[i])+", "); } System.err.println("\n n = "+palette.length+" "+ (transparentIndex >= 0 ? Integer.toHexString(palette[transparentIndex]) : "Not Transparent")); */ // Figure out how many bits to use. int logColors; int nColors = palette.length; if (nColors <= 2) logColors = 1; else if (nColors <= 4) logColors = 2; else if (nColors <= 16) logColors = 4; else logColors = 8; GIFEncode(width, height, interlace, (byte) 0, transparentIndex, logColors, palette); } byte GetPixel(int x, int y) throws IOException { return (byte)rgbPixels[y][x]; } void writeString(String str) throws IOException { byte[] buf = str.getBytes(); out.write(buf); } // Adapted from ppmtogif, which is based on GIFENCOD by David // Rowley <mgardi@watdscu.waterloo.edu>. Lempel-Zim compression // based on "compress". int Width, Height; boolean Interlace; int curx, cury; int CountDown; int Pass = 0; void GIFEncode(int Width, int Height, boolean Interlace, byte Background, int Transparent, int BitsPerPixel, int[] palette) throws IOException { byte B; int LeftOfs, TopOfs; int InitCodeSize; int i; this.Width = Width; this.Height = Height; this.Interlace = Interlace; LeftOfs = TopOfs = 0; // Calculate number of bits we are expecting CountDown = Width * Height; // Indicate which pass we are on (if interlace) Pass = 0; // The initial code size if (BitsPerPixel <= 1) InitCodeSize = 2; else InitCodeSize = BitsPerPixel; // Set up the current x and y position curx = 0; cury = 0; // Write the Magic header writeString("GIF89a"); // Write out the screen width and height Putword(Width); Putword(Height); // Indicate that there is a global colour map B = (byte) 0x80; // Yes, there is a color map // OR in the resolution B |= (byte) ((8 - 1) << 4); // Not sorted // OR in the Bits per Pixel B |= (byte) ((BitsPerPixel - 1)); // Write it out Putbyte(B); // Write out the Background colour Putbyte(Background); // Pixel aspect ratio - 1:1. // Putbyte( (byte) 49); // Java's GIF reader currently has a bug, if the aspect ratio byte is // not zero it throws an ImageFormatException. It doesn't know that // 49 means a 1:1 aspect ratio. Well, whatever, zero works with all // the other decoders I've tried so it probably doesn't hurt. Putbyte((byte) 0); // Write out the Global Colour Map int colorMapSize = 1 << BitsPerPixel; for (i = 0; i < colorMapSize; ++i) { if (i < palette.length) { Putbyte((byte)((palette[i] >> 16) & 0xFF)); Putbyte((byte)((palette[i] >> 8) & 0xFF)); Putbyte((byte)((palette[i]) & 0xFF)); } else { Putbyte((byte)0); Putbyte((byte)0); Putbyte((byte)0); } } // Write out extension for transparent colour index, if necessary. if (Transparent != -1) { Putbyte((byte) '!'); Putbyte((byte) 0xf9); Putbyte((byte) 4); Putbyte((byte) 1); Putbyte((byte) 0); Putbyte((byte) 0); Putbyte((byte) Transparent); Putbyte((byte) 0); } // Write an Image separator Putbyte((byte) ','); // Write the Image header Putword(LeftOfs); Putword(TopOfs); Putword(Width); Putword(Height); // Write out whether or not the image is interlaced if (Interlace) Putbyte((byte) 0x40); else Putbyte((byte) 0x00); // Write out the initial code size Putbyte((byte) InitCodeSize); // Go and actually compress the data compress(InitCodeSize + 1); // Write out a Zero-length packet (to end the series) Putbyte((byte) 0); // Write out the comment if ((comment != null) && (comment.length() > 0)) { Putbyte((byte) 0x21); Putbyte((byte) 0xFE); Putbyte((byte) comment.length()); writeString(comment); Putbyte((byte) 0); } // Write the GIF file terminator Putbyte((byte) ';'); } // Bump the 'curx' and 'cury' to point to the next pixel void BumpPixel() { // Bump the current X position ++curx; // If we are at the end of a scan line, set curx back to the beginning // If we are interlaced, bump the cury to the appropriate spot, // otherwise, just increment it. if (curx == Width) { curx = 0; if (!Interlace) { ++cury; } else { switch (Pass) { case 0: cury += 8; if (cury >= Height) { ++Pass; cury = 4; } break; case 1: cury += 8; if (cury >= Height) { ++Pass; cury = 2; } break; case 2: cury += 4; if (cury >= Height) { ++Pass; cury = 1; } break; case 3: cury += 2; break; } } } } static final int EOF = -1; // Return the next pixel from the image int GIFNextPixel() throws IOException { byte r; if (CountDown == 0) return EOF; --CountDown; r = GetPixel(curx, cury); BumpPixel(); return r & 0xff; } // Write out a word to the GIF file void Putword(int w) throws IOException { Putbyte((byte) (w & 0xff)); Putbyte((byte) ((w >> 8) & 0xff)); } // Write out a byte to the GIF file void Putbyte(byte b) throws IOException { out.write(b); } // GIFCOMPR.C - GIF Image compression routines // // Lempel-Ziv compression based on 'compress'. GIF modifications by // David Rowley (mgardi@watdcsu.waterloo.edu) // General DEFINEs static final int BITS = 12; static final int HSIZE = 5003; // 80% occupancy // GIF Image compression - modified 'compress' // // Based on: compress.c - File compression ala IEEE Computer, June 1984. // // By Authors: Spencer W. Thomas (decvax!harpo!utah-cs!utah-gr!thomas) // Jim McKie (decvax!mcvax!jim) // Steve Davies (decvax!vax135!petsd!peora!srd) // Ken Turkowski (decvax!decwrl!turtlevax!ken) // James A. Woods (decvax!ihnp4!ames!jaw) // Joe Orost (decvax!vax135!petsd!joe) int n_bits; // number of bits/code int maxbits = BITS; // user settable max # bits/code int maxcode; // maximum code, given n_bits int maxmaxcode = 1 << BITS; // should NEVER generate this code final int MAXCODE(int n_bits) { return (1 << n_bits) - 1; } int[] htab = new int[HSIZE]; int[] codetab = new int[HSIZE]; int hsize = HSIZE; // for dynamic table sizing int free_ent = 0; // first unused entry // block compression parameters -- after all codes are used up, // and compression rate changes, start over. boolean clear_flg = false; // Algorithm: use open addressing double hashing (no chaining) on the // prefix code / next character combination. We do a variant of Knuth's // algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime // secondary probe. Here, the modular division first probe is gives way // to a faster exclusive-or manipulation. Also do block compression with // an adaptive reset, whereby the code table is cleared when the compression // ratio decreases, but after the table fills. The variable-length output // codes are re-sized at this point, and a special CLEAR code is generated // for the decompressor. Late addition: construct the table according to // file size for noticeable speed improvement on small files. Please direct // questions about this implementation to ames!jaw. int g_init_bits; int ClearCode; int EOFCode; void compress(int init_bits) throws IOException { int fcode; int i /* = 0 */; int c; int ent; int disp; int hsize_reg; int hshift; // Set up the globals: g_init_bits - initial number of bits g_init_bits = init_bits; // Set up the necessary values clear_flg = false; n_bits = g_init_bits; maxcode = MAXCODE(n_bits); ClearCode = 1 << (init_bits - 1); EOFCode = ClearCode + 1; free_ent = ClearCode + 2; char_init(); ent = GIFNextPixel(); hshift = 0; for (fcode = hsize; fcode < 65536; fcode *= 2) ++hshift; hshift = 8 - hshift; // set hash code range bound hsize_reg = hsize; cl_hash(hsize_reg); // clear hash table output(ClearCode); outer_loop: while ((c = GIFNextPixel()) != EOF) { fcode = (c << maxbits) + ent; i = (c << hshift) ^ ent; // xor hashing if (htab[i] == fcode) { ent = codetab[i]; continue; } else if (htab[i] >= 0) // non-empty slot { disp = hsize_reg - i; // secondary hash (after G. Knott) if (i == 0) disp = 1; do { if ((i -= disp) < 0) i += hsize_reg; if (htab[i] == fcode) { ent = codetab[i]; continue outer_loop; } } while (htab[i] >= 0); } output(ent); ent = c; if (free_ent < maxmaxcode) { codetab[i] = free_ent++; // code -> hashtable htab[i] = fcode; } else cl_block(); } // Put out the final code. output(ent); output(EOFCode); } // output // // Output the given code. // Inputs: // code: A n_bits-bit integer. If == -1, then EOF. This assumes // that n_bits =< wordsize - 1. // Outputs: // Outputs code to the file. // Assumptions: // Chars are 8 bits long. // Algorithm: // Maintain a BITS character long buffer (so that 8 codes will // fit in it exactly). Use the VAX insv instruction to insert each // code in turn. When the buffer fills up empty it and start over. int cur_accum = 0; int cur_bits = 0; int masks[] = { 0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF, 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF }; void output(int code) throws IOException { cur_accum &= masks[cur_bits]; if (cur_bits > 0) cur_accum |= (code << cur_bits); else cur_accum = code; cur_bits += n_bits; while (cur_bits >= 8) { char_out((byte) (cur_accum & 0xff)); cur_accum >>= 8; cur_bits -= 8; } // If the next entry is going to be too big for the code size, // then increase it, if possible. if (free_ent > maxcode || clear_flg) { if (clear_flg) { maxcode = MAXCODE(n_bits = g_init_bits); clear_flg = false; } else { ++n_bits; if (n_bits == maxbits) maxcode = maxmaxcode; else maxcode = MAXCODE(n_bits); } } if (code == EOFCode) { // At EOF, write the rest of the buffer. while (cur_bits > 0) { char_out((byte) (cur_accum & 0xff)); cur_accum >>= 8; cur_bits -= 8; } flush_char(); } } // Clear out the hash table // table clear for block compress void cl_block() throws IOException { cl_hash(hsize); free_ent = ClearCode + 2; clear_flg = true; output(ClearCode); } // reset code table void cl_hash(int hsize) { for (int i = 0; i < hsize; ++i) htab[i] = -1; } // GIF Specific routines // Number of characters so far in this 'packet' int a_count; // Set up the 'byte output' routine void char_init() { a_count = 0; } // Define the storage for the packet accumulator byte[] accum = new byte[256]; // Add a character to the end of the current packet, and if it is 254 // characters, flush the packet to disk. void char_out(byte c) throws IOException { accum[a_count++] = c; if (a_count >= 254) flush_char(); } // Flush the packet to disk, and reset the accumulator void flush_char() throws IOException { if (a_count > 0) { out.write(a_count); out.write(accum, 0, a_count); a_count = 0; } } }