/* * JBoss, Home of Professional Open Source * Copyright 2010 Red Hat Inc. and/or its affiliates and other * contributors as indicated by the @author tags. All rights reserved. * See the copyright.txt in the distribution for a full listing of * individual contributors. * * This is free software; you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * This software is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this software; if not, write to the Free * Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA * 02110-1301 USA, or see the FSF site: http://www.fsf.org. */ /* * Written by Doug Lea with assistance from members of JCP JSR-166 * Expert Group and released to the public domain, as explained at * http://creativecommons.org/licenses/publicdomain */ package org.infinispan.util.concurrent; import java.lang.ref.Reference; import java.lang.ref.ReferenceQueue; import java.lang.ref.WeakReference; import java.util.AbstractCollection; import java.util.AbstractMap; import java.util.AbstractSet; import java.util.Collection; import java.util.ConcurrentModificationException; import java.util.Enumeration; import java.util.Hashtable; import java.util.Iterator; import java.util.Map; import java.util.NoSuchElementException; import java.util.Set; import java.util.concurrent.ConcurrentMap; import java.util.concurrent.locks.ReentrantLock; /** * An alternative weak-key {@link ConcurrentMap} which is similar to {@link java.util.concurrent.ConcurrentHashMap}. * * @param <K> the type of keys maintained by this map * @param <V> the type of mapped values * @author <a href="http://www.jboss.org/netty/">The Netty Project</a> * @author Doug Lea * @author Jason T. Greene * @author <a href="http://gleamynode.net/">Trustin Lee</a> * @version $Rev: 2371 $, $Date: 2010-10-19 15:00:42 +0900 (Tue, 19 Oct 2010) $ */ public final class ConcurrentWeakKeyHashMap<K, V> extends AbstractMap<K, V> implements ConcurrentMap<K, V> { /* * The basic strategy is to subdivide the table among Segments, * each of which itself is a concurrently readable hash table. */ /** * The default initial capacity for this table, used when not otherwise specified in a constructor. */ static final int DEFAULT_INITIAL_CAPACITY = 16; /** * The default load factor for this table, used when not otherwise specified in a constructor. */ static final float DEFAULT_LOAD_FACTOR = 0.75f; /** * The default concurrency level for this table, used when not otherwise specified in a constructor. */ static final int DEFAULT_CONCURRENCY_LEVEL = 16; /** * The maximum capacity, used if a higher value is implicitly specified by either of the constructors with * arguments. MUST be a power of two <= 1<<30 to ensure that entries are indexable using integers. */ static final int MAXIMUM_CAPACITY = 1 << 30; /** * The maximum number of segments to allow; used to bound constructor arguments. */ static final int MAX_SEGMENTS = 1 << 16; // slightly conservative /** * Number of unsynchronized retries in size and containsValue methods before resorting to locking. This is used to * avoid unbounded retries if tables undergo continuous modification which would make it impossible to obtain an * accurate result. */ static final int RETRIES_BEFORE_LOCK = 2; /* ---------------- Fields -------------- */ /** * Mask value for indexing into segments. The upper bits of a key's hash code are used to choose the segment. */ final int segmentMask; /** * Shift value for indexing within segments. */ final int segmentShift; /** * The segments, each of which is a specialized hash table */ final Segment<K, V>[] segments; Set<K> keySet; Set<Map.Entry<K, V>> entrySet; Collection<V> values; /* ---------------- Small Utilities -------------- */ /** * Applies a supplemental hash function to a given hashCode, which defends against poor quality hash functions. * This is critical because ConcurrentReferenceHashMap uses power-of-two length hash tables, that otherwise * encounter collisions for hashCodes that do not differ in lower or upper bits. */ private static int hash(int h) { // Spread bits to regularize both segment and index locations, // using variant of single-word Wang/Jenkins hash. h += h << 15 ^ 0xffffcd7d; h ^= h >>> 10; h += h << 3; h ^= h >>> 6; h += (h << 2) + (h << 14); return h ^ h >>> 16; } /** * Returns the segment that should be used for key with given hash. * * @param hash the hash code for the key * @return the segment */ final Segment<K, V> segmentFor(int hash) { return segments[hash >>> segmentShift & segmentMask]; } private int hashOf(Object key) { return hash(key.hashCode()); } /* ---------------- Inner Classes -------------- */ /** * A weak-key reference which stores the key hash needed for reclamation. */ static final class WeakKeyReference<K> extends WeakReference<K> { final int hash; WeakKeyReference(K key, int hash, ReferenceQueue<Object> refQueue) { super(key, refQueue); this.hash = hash; } public final int keyHash() { return hash; } public final Object keyRef() { return this; } } /** * ConcurrentReferenceHashMap list entry. Note that this is never exported out as a user-visible Map.Entry. * <p/> * Because the value field is volatile, not final, it is legal wrt the Java Memory Model for an unsynchronized * reader to see null instead of initial value when read via a data race. Although a reordering leading to this is * not likely to ever actually occur, the Segment.readValueUnderLock method is used as a backup in case a null * (pre-initialized) value is ever seen in an unsynchronized access method. */ static final class HashEntry<K, V> { final Object keyRef; final int hash; volatile Object valueRef; final HashEntry<K, V> next; HashEntry( K key, int hash, HashEntry<K, V> next, V value, ReferenceQueue<Object> refQueue) { this.hash = hash; this.next = next; this.keyRef = new WeakKeyReference<K>(key, hash, refQueue); this.valueRef = value; } @SuppressWarnings("unchecked") final K key() { return ((WeakReference<K>) keyRef).get(); } final V value() { return dereferenceValue(valueRef); } @SuppressWarnings("unchecked") final V dereferenceValue(Object value) { if (value instanceof WeakKeyReference) { return ((Reference<V>) value).get(); } return (V) value; } final void setValue(V value) { this.valueRef = value; } @SuppressWarnings("unchecked") static <K, V> HashEntry<K, V>[] newArray(int i) { return new HashEntry[i]; } } /** * Segments are specialized versions of hash tables. This subclasses from ReentrantLock opportunistically, just to * simplify some locking and avoid separate construction. */ static final class Segment<K, V> extends ReentrantLock { /* * Segments maintain a table of entry lists that are ALWAYS kept in a * consistent state, so can be read without locking. Next fields of * nodes are immutable (final). All list additions are performed at the * front of each bin. This makes it easy to check changes, and also fast * to traverse. When nodes would otherwise be changed, new nodes are * created to replace them. This works well for hash tables since the * bin lists tend to be short. (The average length is less than two for * the default load factor threshold.) * * Read operations can thus proceed without locking, but rely on * selected uses of volatiles to ensure that completed write operations * performed by other threads are noticed. For most purposes, the * "count" field, tracking the number of elements, serves as that * volatile variable ensuring visibility. This is convenient because * this field needs to be read in many read operations anyway: * * - All (unsynchronized) read operations must first read the * "count" field, and should not look at table entries if * it is 0. * * - All (synchronized) write operations should write to * the "count" field after structurally changing any bin. * The operations must not take any action that could even * momentarily cause a concurrent read operation to see * inconsistent data. This is made easier by the nature of * the read operations in Map. For example, no operation * can reveal that the table has grown but the threshold * has not yet been updated, so there are no atomicity * requirements for this with respect to reads. * * As a guide, all critical volatile reads and writes to the count field * are marked in code comments. */ private static final long serialVersionUID = -8328104880676891126L; /** * The number of elements in this segment's region. */ transient volatile int count; /** * Number of updates that alter the size of the table. This is used during bulk-read methods to make sure they * see a consistent snapshot: If modCounts change during a traversal of segments computing size or checking * containsValue, then we might have an inconsistent view of state so (usually) must retry. */ int modCount; /** * The table is rehashed when its size exceeds this threshold. (The value of this field is always <tt>(capacity * * loadFactor)</tt>.) */ int threshold; /** * The per-segment table. */ transient volatile HashEntry<K, V>[] table; /** * The load factor for the hash table. Even though this value is same for all segments, it is replicated to * avoid needing links to outer object. */ final float loadFactor; /** * The collected weak-key reference queue for this segment. This should be (re)initialized whenever table is * assigned, */ transient volatile ReferenceQueue<Object> refQueue; Segment(int initialCapacity, float lf) { loadFactor = lf; setTable(HashEntry.<K, V>newArray(initialCapacity)); } @SuppressWarnings("unchecked") static <K, V> Segment<K, V>[] newArray(int i) { return new Segment[i]; } private boolean keyEq(Object src, Object dest) { return src.equals(dest); } /** * Sets table to new HashEntry array. Call only while holding lock or in constructor. */ void setTable(HashEntry<K, V>[] newTable) { threshold = (int) (newTable.length * loadFactor); table = newTable; refQueue = new ReferenceQueue<Object>(); } /** * Returns properly casted first entry of bin for given hash. */ HashEntry<K, V> getFirst(int hash) { HashEntry<K, V>[] tab = table; return tab[hash & tab.length - 1]; } HashEntry<K, V> newHashEntry( K key, int hash, HashEntry<K, V> next, V value) { return new HashEntry<K, V>( key, hash, next, value, refQueue); } /** * Reads value field of an entry under lock. Called if value field ever appears to be null. This is possible * only if a compiler happens to reorder a HashEntry initialization with its table assignment, which is legal * under memory model but is not known to ever occur. */ V readValueUnderLock(HashEntry<K, V> e) { lock(); try { removeStale(); return e.value(); } finally { unlock(); } } /* Specialized implementations of map methods */ V get(Object key, int hash) { if (count != 0) { // read-volatile HashEntry<K, V> e = getFirst(hash); while (e != null) { if (e.hash == hash && keyEq(key, e.key())) { Object opaque = e.valueRef; if (opaque != null) { return e.dereferenceValue(opaque); } return readValueUnderLock(e); // recheck } e = e.next; } } return null; } boolean containsKey(Object key, int hash) { if (count != 0) { // read-volatile HashEntry<K, V> e = getFirst(hash); while (e != null) { if (e.hash == hash && keyEq(key, e.key())) { return true; } e = e.next; } } return false; } boolean containsValue(Object value) { if (count != 0) { // read-volatile HashEntry<K, V>[] tab = table; int len = tab.length; for (int i = 0; i < len; i++) { for (HashEntry<K, V> e = tab[i]; e != null; e = e.next) { Object opaque = e.valueRef; V v; if (opaque == null) { v = readValueUnderLock(e); // recheck } else { v = e.dereferenceValue(opaque); } if (value.equals(v)) { return true; } } } } return false; } boolean replace(K key, int hash, V oldValue, V newValue) { lock(); try { removeStale(); HashEntry<K, V> e = getFirst(hash); while (e != null && (e.hash != hash || !keyEq(key, e.key()))) { e = e.next; } boolean replaced = false; if (e != null && oldValue.equals(e.value())) { replaced = true; e.setValue(newValue); } return replaced; } finally { unlock(); } } V replace(K key, int hash, V newValue) { lock(); try { removeStale(); HashEntry<K, V> e = getFirst(hash); while (e != null && (e.hash != hash || !keyEq(key, e.key()))) { e = e.next; } V oldValue = null; if (e != null) { oldValue = e.value(); e.setValue(newValue); } return oldValue; } finally { unlock(); } } V put(K key, int hash, V value, boolean onlyIfAbsent) { lock(); try { removeStale(); int c = count; if (c++ > threshold) { // ensure capacity int reduced = rehash(); if (reduced > 0) { count = (c -= reduced) - 1; // write-volatile } } HashEntry<K, V>[] tab = table; int index = hash & tab.length - 1; HashEntry<K, V> first = tab[index]; HashEntry<K, V> e = first; while (e != null && (e.hash != hash || !keyEq(key, e.key()))) { e = e.next; } V oldValue; if (e != null) { oldValue = e.value(); if (!onlyIfAbsent) { e.setValue(value); } } else { oldValue = null; ++modCount; tab[index] = newHashEntry(key, hash, first, value); count = c; // write-volatile } return oldValue; } finally { unlock(); } } int rehash() { HashEntry<K, V>[] oldTable = table; int oldCapacity = oldTable.length; if (oldCapacity >= MAXIMUM_CAPACITY) { return 0; } /* * Reclassify nodes in each list to new Map. Because we are using * power-of-two expansion, the elements from each bin must either * stay at same index, or move with a power of two offset. We * eliminate unnecessary node creation by catching cases where old * nodes can be reused because their next fields won't change. * Statistically, at the default threshold, only about one-sixth of * them need cloning when a table doubles. The nodes they replace * will be garbage collectable as soon as they are no longer * referenced by any reader thread that may be in the midst of * traversing table right now. */ HashEntry<K, V>[] newTable = HashEntry.newArray(oldCapacity << 1); threshold = (int) (newTable.length * loadFactor); int sizeMask = newTable.length - 1; int reduce = 0; for (int i = 0; i < oldCapacity; i++) { // We need to guarantee that any existing reads of old Map can // proceed. So we cannot yet null out each bin. HashEntry<K, V> e = oldTable[i]; if (e != null) { HashEntry<K, V> next = e.next; int idx = e.hash & sizeMask; // Single node on list if (next == null) { newTable[idx] = e; } else { // Reuse trailing consecutive sequence at same slot HashEntry<K, V> lastRun = e; int lastIdx = idx; for (HashEntry<K, V> last = next; last != null; last = last.next) { int k = last.hash & sizeMask; if (k != lastIdx) { lastIdx = k; lastRun = last; } } newTable[lastIdx] = lastRun; // Clone all remaining nodes for (HashEntry<K, V> p = e; p != lastRun; p = p.next) { // Skip GC'd weak references K key = p.key(); if (key == null) { reduce++; continue; } int k = p.hash & sizeMask; HashEntry<K, V> n = newTable[k]; newTable[k] = newHashEntry(key, p.hash, n, p.value()); } } } } table = newTable; return reduce; } /** * Remove; match on key only if value null, else match both. */ V remove(Object key, int hash, Object value, boolean refRemove) { lock(); try { if (!refRemove) { removeStale(); } int c = count - 1; HashEntry<K, V>[] tab = table; int index = hash & tab.length - 1; HashEntry<K, V> first = tab[index]; HashEntry<K, V> e = first; // a reference remove operation compares the Reference instance while (e != null && key != e.keyRef && (refRemove || hash != e.hash || !keyEq(key, e.key()))) { e = e.next; } V oldValue = null; if (e != null) { V v = e.value(); if (value == null || value.equals(v)) { oldValue = v; // All entries following removed node can stay in list, // but all preceding ones need to be cloned. ++modCount; HashEntry<K, V> newFirst = e.next; for (HashEntry<K, V> p = first; p != e; p = p.next) { K pKey = p.key(); if (pKey == null) { // Skip GC'd keys c--; continue; } newFirst = newHashEntry( pKey, p.hash, newFirst, p.value()); } tab[index] = newFirst; count = c; // write-volatile } } return oldValue; } finally { unlock(); } } @SuppressWarnings("rawtypes") final void removeStale() { WeakKeyReference ref; while ((ref = (WeakKeyReference) refQueue.poll()) != null) { remove(ref.keyRef(), ref.keyHash(), null, true); } } void clear() { if (count != 0) { lock(); try { HashEntry<K, V>[] tab = table; for (int i = 0; i < tab.length; i++) { tab[i] = null; } ++modCount; // replace the reference queue to avoid unnecessary stale // cleanups refQueue = new ReferenceQueue<Object>(); count = 0; // write-volatile } finally { unlock(); } } } } /* ---------------- Public operations -------------- */ /** * Creates a new, empty map with the specified initial capacity, load factor and concurrency level. * * @param initialCapacity the initial capacity. The implementation performs internal sizing to accommodate this * many elements. * @param loadFactor the load factor threshold, used to control resizing. Resizing may be performed when the * average number of elements per bin exceeds this threshold. * @param concurrencyLevel the estimated number of concurrently updating threads. The implementation performs * internal sizing to try to accommodate this many threads. * @throws IllegalArgumentException if the initial capacity is negative or the load factor or concurrencyLevel are * nonpositive. */ public ConcurrentWeakKeyHashMap( int initialCapacity, float loadFactor, int concurrencyLevel) { if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0) { throw new IllegalArgumentException(); } if (concurrencyLevel > MAX_SEGMENTS) { concurrencyLevel = MAX_SEGMENTS; } // Find power-of-two sizes best matching arguments int sshift = 0; int ssize = 1; while (ssize < concurrencyLevel) { ++sshift; ssize <<= 1; } segmentShift = 32 - sshift; segmentMask = ssize - 1; this.segments = Segment.newArray(ssize); if (initialCapacity > MAXIMUM_CAPACITY) { initialCapacity = MAXIMUM_CAPACITY; } int c = initialCapacity / ssize; if (c * ssize < initialCapacity) { ++c; } int cap = 1; while (cap < c) { cap <<= 1; } for (int i = 0; i < this.segments.length; ++i) { this.segments[i] = new Segment<K, V>(cap, loadFactor); } } /** * Creates a new, empty map with the specified initial capacity and load factor and with the default reference types * (weak keys, strong values), and concurrencyLevel (16). * * @param initialCapacity The implementation performs internal sizing to accommodate this many elements. * @param loadFactor the load factor threshold, used to control resizing. Resizing may be performed when the * average number of elements per bin exceeds this threshold. * @throws IllegalArgumentException if the initial capacity of elements is negative or the load factor is * nonpositive */ public ConcurrentWeakKeyHashMap(int initialCapacity, float loadFactor) { this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL); } /** * Creates a new, empty map with the specified initial capacity, and with default reference types (weak keys, strong * values), load factor (0.75) and concurrencyLevel (16). * * @param initialCapacity the initial capacity. The implementation performs internal sizing to accommodate this many * elements. * @throws IllegalArgumentException if the initial capacity of elements is negative. */ public ConcurrentWeakKeyHashMap(int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL); } /** * Creates a new, empty map with a default initial capacity (16), reference types (weak keys, strong values), * default load factor (0.75) and concurrencyLevel (16). */ public ConcurrentWeakKeyHashMap() { this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL); } /** * Creates a new map with the same mappings as the given map. The map is created with a capacity of 1.5 times the * number of mappings in the given map or 16 (whichever is greater), and a default load factor (0.75) and * concurrencyLevel (16). * * @param m the map */ public ConcurrentWeakKeyHashMap(Map<? extends K, ? extends V> m) { this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1, DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL); putAll(m); } /** * Returns <tt>true</tt> if this map contains no key-value mappings. * * @return <tt>true</tt> if this map contains no key-value mappings */ @Override public boolean isEmpty() { final Segment<K, V>[] segments = this.segments; /* * We keep track of per-segment modCounts to avoid ABA problems in which * an element in one segment was added and in another removed during * traversal, in which case the table was never actually empty at any * point. Note the similar use of modCounts in the size() and * containsValue() methods, which are the only other methods also * susceptible to ABA problems. */ int[] mc = new int[segments.length]; int mcsum = 0; for (int i = 0; i < segments.length; ++i) { if (segments[i].count != 0) { return false; } else { mcsum += mc[i] = segments[i].modCount; } } // If mcsum happens to be zero, then we know we got a snapshot before // any modifications at all were made. This is probably common enough // to bother tracking. if (mcsum != 0) { for (int i = 0; i < segments.length; ++i) { if (segments[i].count != 0 || mc[i] != segments[i].modCount) { return false; } } } return true; } /** * Returns the number of key-value mappings in this map. If the map contains more than <tt>Integer.MAX_VALUE</tt> * elements, returns <tt>Integer.MAX_VALUE</tt>. * * @return the number of key-value mappings in this map */ @Override public int size() { final Segment<K, V>[] segments = this.segments; long sum = 0; long check = 0; int[] mc = new int[segments.length]; // Try a few times to get accurate count. On failure due to continuous // async changes in table, resort to locking. for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) { check = 0; sum = 0; int mcsum = 0; for (int i = 0; i < segments.length; ++i) { sum += segments[i].count; mcsum += mc[i] = segments[i].modCount; } if (mcsum != 0) { for (int i = 0; i < segments.length; ++i) { check += segments[i].count; if (mc[i] != segments[i].modCount) { check = -1; // force retry break; } } } if (check == sum) { break; } } if (check != sum) { // Resort to locking all segments sum = 0; for (int i = 0; i < segments.length; ++i) { segments[i].lock(); } try { for (int i = 0; i < segments.length; ++i) { sum += segments[i].count; } } finally { for (int i = 0; i < segments.length; ++i) { segments[i].unlock(); } } } if (sum > Integer.MAX_VALUE) { return Integer.MAX_VALUE; } else { return (int) sum; } } /** * Returns the value to which the specified key is mapped, or {@code null} if this map contains no mapping for the * key. * <p/> * <p>More formally, if this map contains a mapping from a key {@code k} to a value {@code v} such that {@code * key.equals(k)}, then this method returns {@code v}; otherwise it returns {@code null}. (There can be at most one * such mapping.) * * @throws NullPointerException if the specified key is null */ @Override public V get(Object key) { int hash = hashOf(key); return segmentFor(hash).get(key, hash); } /** * Tests if the specified object is a key in this table. * * @param key possible key * @return <tt>true</tt> if and only if the specified object is a key in this table, as determined by the * <tt>equals</tt> method; <tt>false</tt> otherwise. * @throws NullPointerException if the specified key is null */ @Override public boolean containsKey(Object key) { int hash = hashOf(key); return segmentFor(hash).containsKey(key, hash); } /** * Returns <tt>true</tt> if this map maps one or more keys to the specified value. Note: This method requires a full * internal traversal of the hash table, and so is much slower than method <tt>containsKey</tt>. * * @param value value whose presence in this map is to be tested * @return <tt>true</tt> if this map maps one or more keys to the specified value * @throws NullPointerException if the specified value is null */ @Override public boolean containsValue(Object value) { if (value == null) { throw new NullPointerException(); } // See explanation of modCount use above final Segment<K, V>[] segments = this.segments; int[] mc = new int[segments.length]; // Try a few times without locking for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) { int mcsum = 0; for (int i = 0; i < segments.length; ++i) { mcsum += mc[i] = segments[i].modCount; if (segments[i].containsValue(value)) { return true; } } boolean cleanSweep = true; if (mcsum != 0) { for (int i = 0; i < segments.length; ++i) { if (mc[i] != segments[i].modCount) { cleanSweep = false; break; } } } if (cleanSweep) { return false; } } // Resort to locking all segments for (int i = 0; i < segments.length; ++i) { segments[i].lock(); } boolean found = false; try { for (int i = 0; i < segments.length; ++i) { if (segments[i].containsValue(value)) { found = true; break; } } } finally { for (int i = 0; i < segments.length; ++i) { segments[i].unlock(); } } return found; } /** * Legacy method testing if some key maps into the specified value in this table. This method is identical in * functionality to {@link #containsValue}, and exists solely to ensure full compatibility with class {@link * Hashtable}, which supported this method prior to introduction of the Java Collections framework. * * @param value a value to search for * @return <tt>true</tt> if and only if some key maps to the <tt>value</tt> argument in this table as determined by * the <tt>equals</tt> method; <tt>false</tt> otherwise * @throws NullPointerException if the specified value is null */ public boolean contains(Object value) { return containsValue(value); } /** * Maps the specified key to the specified value in this table. Neither the key nor the value can be null. * <p/> * <p>The value can be retrieved by calling the <tt>get</tt> method with a key that is equal to the original key. * * @param key key with which the specified value is to be associated * @param value value to be associated with the specified key * @return the previous value associated with <tt>key</tt>, or <tt>null</tt> if there was no mapping for * <tt>key</tt> * @throws NullPointerException if the specified key or value is null */ @Override public V put(K key, V value) { if (value == null) { throw new NullPointerException(); } int hash = hashOf(key); return segmentFor(hash).put(key, hash, value, false); } /** * {@inheritDoc} * * @return the previous value associated with the specified key, or <tt>null</tt> if there was no mapping for the * key * @throws NullPointerException if the specified key or value is null */ @Override public V putIfAbsent(K key, V value) { if (value == null) { throw new NullPointerException(); } int hash = hashOf(key); return segmentFor(hash).put(key, hash, value, true); } /** * Copies all of the mappings from the specified map to this one. These mappings replace any mappings that this map * had for any of the keys currently in the specified map. * * @param m mappings to be stored in this map */ @Override public void putAll(Map<? extends K, ? extends V> m) { for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) { put(e.getKey(), e.getValue()); } } /** * Removes the key (and its corresponding value) from this map. This method does nothing if the key is not in the * map. * * @param key the key that needs to be removed * @return the previous value associated with <tt>key</tt>, or <tt>null</tt> if there was no mapping for * <tt>key</tt> * @throws NullPointerException if the specified key is null */ @Override public V remove(Object key) { int hash = hashOf(key); return segmentFor(hash).remove(key, hash, null, false); } /** * {@inheritDoc} * * @throws NullPointerException if the specified key is null */ @Override public boolean remove(Object key, Object value) { int hash = hashOf(key); if (value == null) { return false; } return segmentFor(hash).remove(key, hash, value, false) != null; } /** * {@inheritDoc} * * @throws NullPointerException if any of the arguments are null */ @Override public boolean replace(K key, V oldValue, V newValue) { if (oldValue == null || newValue == null) { throw new NullPointerException(); } int hash = hashOf(key); return segmentFor(hash).replace(key, hash, oldValue, newValue); } /** * {@inheritDoc} * * @return the previous value associated with the specified key, or <tt>null</tt> if there was no mapping for the * key * @throws NullPointerException if the specified key or value is null */ @Override public V replace(K key, V value) { if (value == null) { throw new NullPointerException(); } int hash = hashOf(key); return segmentFor(hash).replace(key, hash, value); } /** * Removes all of the mappings from this map. */ @Override public void clear() { for (int i = 0; i < segments.length; ++i) { segments[i].clear(); } } /** * Removes any stale entries whose keys have been finalized. Use of this method is normally not necessary since * stale entries are automatically removed lazily, when blocking operations are required. However, there are some * cases where this operation should be performed eagerly, such as cleaning up old references to a ClassLoader in a * multi-classloader environment. * <p/> * Note: this method will acquire locks, one at a time, across all segments of this table, so if it is to be used, * it should be used sparingly. */ public void purgeStaleEntries() { for (int i = 0; i < segments.length; ++i) { segments[i].removeStale(); } } /** * Returns a {@link Set} view of the keys contained in this map. The set is backed by the map, so changes to the * map are reflected in the set, and vice-versa. The set supports element removal, which removes the corresponding * mapping from this map, via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>, <tt>removeAll</tt>, * <tt>retainAll</tt>, and <tt>clear</tt> operations. It does not support the <tt>add</tt> or <tt>addAll</tt> * operations. * <p/> * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator that will never throw {@link * ConcurrentModificationException}, and guarantees to traverse elements as they existed upon construction of the * iterator, and may (but is not guaranteed to) reflect any modifications subsequent to construction. */ @Override public Set<K> keySet() { Set<K> ks = keySet; return ks != null ? ks : (keySet = new KeySet()); } /** * Returns a {@link Collection} view of the values contained in this map. The collection is backed by the map, so * changes to the map are reflected in the collection, and vice-versa. The collection supports element removal, * which removes the corresponding mapping from this map, via the <tt>Iterator.remove</tt>, * <tt>Collection.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations. It does not * support the <tt>add</tt> or <tt>addAll</tt> operations. * <p/> * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator that will never throw {@link * ConcurrentModificationException}, and guarantees to traverse elements as they existed upon construction of the * iterator, and may (but is not guaranteed to) reflect any modifications subsequent to construction. */ @Override public Collection<V> values() { Collection<V> vs = values; return vs != null ? vs : (values = new Values()); } /** * Returns a {@link Set} view of the mappings contained in this map. The set is backed by the map, so changes to the * map are reflected in the set, and vice-versa. The set supports element removal, which removes the corresponding * mapping from the map, via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>, <tt>removeAll</tt>, * <tt>retainAll</tt>, and <tt>clear</tt> operations. It does not support the <tt>add</tt> or <tt>addAll</tt> * operations. * <p/> * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator that will never throw {@link * ConcurrentModificationException}, and guarantees to traverse elements as they existed upon construction of the * iterator, and may (but is not guaranteed to) reflect any modifications subsequent to construction. */ @Override public Set<Map.Entry<K, V>> entrySet() { Set<Map.Entry<K, V>> es = entrySet; return es != null ? es : (entrySet = new EntrySet()); } /** * Returns an enumeration of the keys in this table. * * @return an enumeration of the keys in this table * @see #keySet() */ public Enumeration<K> keys() { return new KeyIterator(); } /** * Returns an enumeration of the values in this table. * * @return an enumeration of the values in this table * @see #values() */ public Enumeration<V> elements() { return new ValueIterator(); } /* ---------------- Iterator Support -------------- */ abstract class HashIterator { int nextSegmentIndex; int nextTableIndex; HashEntry<K, V>[] currentTable; HashEntry<K, V> nextEntry; HashEntry<K, V> lastReturned; K currentKey; // Strong reference to weak key (prevents gc) HashIterator() { nextSegmentIndex = segments.length - 1; nextTableIndex = -1; advance(); } public void rewind() { nextSegmentIndex = segments.length - 1; nextTableIndex = -1; currentTable = null; nextEntry = null; lastReturned = null; currentKey = null; advance(); } public boolean hasMoreElements() { return hasNext(); } final void advance() { if (nextEntry != null && (nextEntry = nextEntry.next) != null) { return; } while (nextTableIndex >= 0) { if ((nextEntry = currentTable[nextTableIndex--]) != null) { return; } } while (nextSegmentIndex >= 0) { Segment<K, V> seg = segments[nextSegmentIndex--]; if (seg.count != 0) { currentTable = seg.table; for (int j = currentTable.length - 1; j >= 0; --j) { if ((nextEntry = currentTable[j]) != null) { nextTableIndex = j - 1; return; } } } } } public boolean hasNext() { while (nextEntry != null) { if (nextEntry.key() != null) { return true; } advance(); } return false; } HashEntry<K, V> nextEntry() { do { if (nextEntry == null) { throw new NoSuchElementException(); } lastReturned = nextEntry; currentKey = lastReturned.key(); advance(); } while (currentKey == null); // Skip GC'd keys return lastReturned; } public void remove() { if (lastReturned == null) { throw new IllegalStateException(); } ConcurrentWeakKeyHashMap.this.remove(currentKey); lastReturned = null; } } final class KeyIterator extends HashIterator implements ReusableIterator<K>, Enumeration<K> { @Override public K next() { return super.nextEntry().key(); } @Override public K nextElement() { return super.nextEntry().key(); } } final class ValueIterator extends HashIterator implements ReusableIterator<V>, Enumeration<V> { @Override public V next() { return super.nextEntry().value(); } @Override public V nextElement() { return super.nextEntry().value(); } } /* * This class is needed for JDK5 compatibility. */ static class SimpleEntry<K, V> implements Entry<K, V> { private final K key; private V value; public SimpleEntry(K key, V value) { this.key = key; this.value = value; } public SimpleEntry(Entry<? extends K, ? extends V> entry) { this.key = entry.getKey(); this.value = entry.getValue(); } @Override public K getKey() { return key; } @Override public V getValue() { return value; } @Override public V setValue(V value) { V oldValue = this.value; this.value = value; return oldValue; } @Override public boolean equals(Object o) { if (!(o instanceof Map.Entry<?, ?>)) { return false; } @SuppressWarnings("rawtypes") Map.Entry e = (Map.Entry) o; return eq(key, e.getKey()) && eq(value, e.getValue()); } @Override public int hashCode() { return (key == null ? 0 : key.hashCode()) ^ (value == null ? 0 : value.hashCode()); } @Override public String toString() { return key + "=" + value; } private static boolean eq(Object o1, Object o2) { return o1 == null ? o2 == null : o1.equals(o2); } } /** * Custom Entry class used by EntryIterator.next(), that relays setValue changes to the underlying map. */ final class WriteThroughEntry extends SimpleEntry<K, V> { WriteThroughEntry(K k, V v) { super(k, v); } /** * Set our entry's value and write through to the map. The value to return is somewhat arbitrary here. Since a * WriteThroughEntry does not necessarily track asynchronous changes, the most recent "previous" value could be * different from what we return (or could even have been removed in which case the put will re-establish). We * do not and can not guarantee more. */ @Override public V setValue(V value) { if (value == null) { throw new NullPointerException(); } V v = super.setValue(value); ConcurrentWeakKeyHashMap.this.put(getKey(), value); return v; } } final class EntryIterator extends HashIterator implements ReusableIterator<Entry<K, V>> { @Override public Map.Entry<K, V> next() { HashEntry<K, V> e = super.nextEntry(); return new WriteThroughEntry(e.key(), e.value()); } } final class KeySet extends AbstractSet<K> { @Override public Iterator<K> iterator() { return new KeyIterator(); } @Override public int size() { return ConcurrentWeakKeyHashMap.this.size(); } @Override public boolean isEmpty() { return ConcurrentWeakKeyHashMap.this.isEmpty(); } @Override public boolean contains(Object o) { return ConcurrentWeakKeyHashMap.this.containsKey(o); } @Override public boolean remove(Object o) { return ConcurrentWeakKeyHashMap.this.remove(o) != null; } @Override public void clear() { ConcurrentWeakKeyHashMap.this.clear(); } } final class Values extends AbstractCollection<V> { @Override public Iterator<V> iterator() { return new ValueIterator(); } @Override public int size() { return ConcurrentWeakKeyHashMap.this.size(); } @Override public boolean isEmpty() { return ConcurrentWeakKeyHashMap.this.isEmpty(); } @Override public boolean contains(Object o) { return ConcurrentWeakKeyHashMap.this.containsValue(o); } @Override public void clear() { ConcurrentWeakKeyHashMap.this.clear(); } } final class EntrySet extends AbstractSet<Map.Entry<K, V>> { @Override public Iterator<Map.Entry<K, V>> iterator() { return new EntryIterator(); } @Override public boolean contains(Object o) { if (!(o instanceof Map.Entry<?, ?>)) { return false; } Map.Entry<?, ?> e = (Map.Entry<?, ?>) o; V v = ConcurrentWeakKeyHashMap.this.get(e.getKey()); return v != null && v.equals(e.getValue()); } @Override public boolean remove(Object o) { if (!(o instanceof Map.Entry<?, ?>)) { return false; } Map.Entry<?, ?> e = (Map.Entry<?, ?>) o; return ConcurrentWeakKeyHashMap.this.remove(e.getKey(), e.getValue()); } @Override public int size() { return ConcurrentWeakKeyHashMap.this.size(); } @Override public boolean isEmpty() { return ConcurrentWeakKeyHashMap.this.isEmpty(); } @Override public void clear() { ConcurrentWeakKeyHashMap.this.clear(); } } public static interface ReusableIterator<E> extends Iterator<E> { void rewind(); } }