/* * Hibernate, Relational Persistence for Idiomatic Java * * Copyright (c) 2010, Red Hat, Inc. and/or its affiliates or third-party contributors as * indicated by the @author tags or express copyright attribution * statements applied by the authors. All third-party contributions are * distributed under license by Red Hat, Inc. * * This copyrighted material is made available to anyone wishing to use, modify, * copy, or redistribute it subject to the terms and conditions of the GNU * Lesser General Public License, as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License * for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this distribution; if not, write to: * Free Software Foundation, Inc. * 51 Franklin Street, Fifth Floor * Boston, MA 02110-1301 USA */ package org.hibernate.search.util.impl; import java.lang.ref.ReferenceQueue; import java.lang.ref.WeakReference; import java.util.AbstractCollection; import java.util.AbstractSet; import java.util.ArrayList; import java.util.Collection; import java.util.ConcurrentModificationException; import java.util.HashSet; import java.util.Iterator; import java.util.Map; import java.util.NoSuchElementException; import java.util.Set; /** * A hashtable-based <tt>Map</tt> implementation with <em>weak keys</em> and * using reference-equality in place of object-equality when comparing keys * (and values). In an <tt>WeakIdentityHashMap</tt>, two keys <tt>k1</tt> and * <tt>k2</tt> are considered equal if and only if <tt>(k1==k2)</tt>. * An entry in a <tt>WeakIdentityHashMap</tt> will automatically be removed when * its key is no longer in ordinary use. More precisely, the presence of a * mapping for a given key will not prevent the key from being discarded by the * garbage collector, that is, made finalizable, finalized, and then reclaimed. * When a key has been discarded its entry is effectively removed from the map. * <p/> * <p>Based on java.util.WeakHashMap</p> * <p>Based on org.jboss.common.collection.WeakIdentityHashMap</p> * * @author Dawid Kurzyniec * @author <a href="mailto:kabir.khan@jboss.org">Kabir Khan</a> * @author Emmanuel Bernard * @see java.util.IdentityHashMap * @see java.util.WeakHashMap */ public class WeakIdentityHashMap<K,V> /*extends AbstractMap*/ implements Map<K,V> { /** * The default initial capacity -- MUST be a power of two. */ private static final int DEFAULT_INITIAL_CAPACITY = 16; /** * The maximum capacity, used if a higher value is implicitly specified * by either of the constructors with arguments. * MUST be a power of two <= 1<<30. */ private static final int MAXIMUM_CAPACITY = 1 << 30; /** * The load fast used when none specified in constructor. */ private static final float DEFAULT_LOAD_FACTOR = 0.75f; /** * The table, resized as necessary. Length MUST Always be a power of two. */ private Entry<K,V>[] table; /** * The number of key-value mappings contained in this weak hash map. */ private int size; /** * The next size value at which to resize (capacity * load factor). */ private int threshold; /** * The load factor for the hash table. */ private final float loadFactor; /** * Reference queue for cleared WeakEntries */ private final ReferenceQueue queue = new ReferenceQueue(); /** * The number of times this HashMap has been structurally modified * Structural modifications are those that change the number of mappings in * the HashMap or otherwise modify its internal structure (e.g., * rehash). This field is used to make iterators on Collection-views of * the HashMap fail-fast. (See ConcurrentModificationException). */ private volatile int modCount; /** * Each of these fields are initialized to contain an instance of the * appropriate view the first time this view is requested. The views are * stateless, so there's no reason to create more than one of each. */ transient volatile Set keySet = null; transient volatile Collection values = null; /** * Constructs a new, empty <tt>WeakIdentityHashMap</tt> with the given * initial capacity and the given load factor. * * @param initialCapacity The initial capacity of the * <tt>WeakIdentityHashMap</tt> * @param loadFactor The load factor of the * <tt>WeakIdentityHashMap</tt> * @throws IllegalArgumentException If the initial capacity is negative, * or if the load factor is nonpositive. */ public WeakIdentityHashMap(int initialCapacity, float loadFactor) { if ( initialCapacity < 0 ) throw new IllegalArgumentException( "Illegal Initial Capacity: " + initialCapacity ); if ( initialCapacity > MAXIMUM_CAPACITY ) initialCapacity = MAXIMUM_CAPACITY; if ( loadFactor <= 0 || Float.isNaN( loadFactor ) ) throw new IllegalArgumentException( "Illegal Load factor: " + loadFactor ); int capacity = 1; while ( capacity < initialCapacity ) capacity <<= 1; table = new Entry[capacity]; this.loadFactor = loadFactor; threshold = (int) ( capacity * loadFactor ); } /** * Constructs a new, empty <tt>WeakIdentityHashMap</tt> with the given * initial capacity and the default load factor, which is <tt>0.75</tt>. * * @param initialCapacity The initial capacity of the * <tt>WeakIdentityHashMap</tt> * @throws IllegalArgumentException If the initial capacity is negative. */ public WeakIdentityHashMap(int initialCapacity) { this( initialCapacity, DEFAULT_LOAD_FACTOR ); } /** * Constructs a new, empty <tt>WeakIdentityHashMap</tt> with the default * initial capacity (16) and the default load factor (0.75). */ public WeakIdentityHashMap() { this.loadFactor = DEFAULT_LOAD_FACTOR; threshold = DEFAULT_INITIAL_CAPACITY; table = new Entry[DEFAULT_INITIAL_CAPACITY]; } /** * Constructs a new <tt>WeakIdentityHashMap</tt> with the same mappings as * the specified <tt>Map</tt>. The <tt>WeakIdentityHashMap</tt> is created * with default load factor, which is <tt>0.75</tt> and an initial capacity * sufficient to hold the mappings in the specified <tt>Map</tt>. * * @param t the map whose mappings are to be placed in this map. * @throws java.lang.NullPointerException if the specified map is null. */ public WeakIdentityHashMap(Map t) { this( Math.max( (int) ( t.size() / DEFAULT_LOAD_FACTOR ) + 1, 16 ), DEFAULT_LOAD_FACTOR ); putAll( t ); } // internal utilities /** * Value representing null keys inside tables. */ private static final Object NULL_KEY = new Object(); /** * Use NULL_KEY for key if it is null. */ private static <T> T maskNull(T key) { return ( key == null ? (T) NULL_KEY : //i don't think there is a better way key ); } /** * Return internal representation of null key back to caller as null */ private static <T> T unmaskNull(T key) { return ( key == NULL_KEY ? null : key ); } /** * Return a hash code for non-null Object x. */ int hash(Object x) { int h = System.identityHashCode( x ); return h - ( h << 7 ); // that is,, -127 * h } /** * Return index for hash code h. */ static int indexFor(int h, int length) { return h & ( length - 1 ); } /** * Expunge stale entries from the table. */ private void expungeStaleEntries() { Object r; while ( ( r = queue.poll() ) != null ) { Entry e = (Entry) r; int h = e.hash; int i = indexFor( h, table.length ); Entry prev = table[i]; Entry p = prev; while ( p != null ) { Entry next = p.next; if ( p == e ) { if ( prev == e ) table[i] = next; else prev.next = next; e.next = null; // Help GC e.value = null; // " " size--; break; } prev = p; p = next; } } } /** * Return the table after first expunging stale entries */ private Entry<K,V>[] getTable() { expungeStaleEntries(); return table; } /** * Returns the number of key-value mappings in this map. * This result is a snapshot, and may not reflect unprocessed * entries that will be removed before next attempted access * because they are no longer referenced. */ public int size() { if ( size == 0 ) return 0; expungeStaleEntries(); return size; } /** * Returns <tt>true</tt> if this map contains no key-value mappings. * This result is a snapshot, and may not reflect unprocessed * entries that will be removed before next attempted access * because they are no longer referenced. */ public boolean isEmpty() { return size() == 0; } /** * Returns the value to which the specified key is mapped in this weak * hash map, or <tt>null</tt> if the map contains no mapping for * this key. A return value of <tt>null</tt> does not <i>necessarily</i> * indicate that the map contains no mapping for the key; it is also * possible that the map explicitly maps the key to <tt>null</tt>. The * <tt>containsKey</tt> method may be used to distinguish these two * cases. * * @param key the key whose associated value is to be returned. * @return the value to which this map maps the specified key, or * <tt>null</tt> if the map contains no mapping for this key. * @see #put(Object,Object) */ public V get(Object key) { Object k = maskNull( key ); int h = hash( k ); Entry<K,V>[] tab = getTable(); int index = indexFor( h, tab.length ); Entry<K,V> e = tab[index]; while ( e != null ) { if ( e.hash == h && k == e.get() ) return e.value; e = e.next; } return null; } /** * Returns <tt>true</tt> if this map contains a mapping for the * specified key. * * @param key The key whose presence in this map is to be tested * @return <tt>true</tt> if there is a mapping for <tt>key</tt>; * <tt>false</tt> otherwise */ public boolean containsKey(Object key) { return getEntry( key ) != null; } /** * Returns the entry associated with the specified key in the HashMap. * Returns null if the HashMap contains no mapping for this key. */ Entry<K,V> getEntry(Object key) { Object k = maskNull( key ); int h = hash( k ); Entry<K,V>[] tab = getTable(); int index = indexFor( h, tab.length ); Entry<K,V> e = tab[index]; while ( e != null && !( e.hash == h && k == e.get() ) ) e = e.next; return e; } /** * Associates the specified value with the specified key in this map. * If the map previously contained a mapping for this key, the old * value is replaced. * * @param key key with which the specified value is to be associated. * @param value value to be associated with the specified key. * @return previous value associated with specified key, or <tt>null</tt> * if there was no mapping for key. A <tt>null</tt> return can * also indicate that the HashMap previously associated * <tt>null</tt> with the specified key. */ public V put(K key, V value) { K k = maskNull( key ); int h = hash( k ); Entry<K,V>[] tab = getTable(); int i = indexFor( h, tab.length ); for ( Entry<K,V> e = tab[i]; e != null; e = e.next ) { if ( h == e.hash && k == e.get() ) { V oldValue = e.value; if ( value != oldValue ) e.value = value; return oldValue; } } modCount++; tab[i] = new Entry<K,V>( k, value, queue, h, tab[i] ); if ( ++size >= threshold ) resize( tab.length * 2 ); return null; } /** * Rehashes the contents of this map into a new <tt>HashMap</tt> instance * with a larger capacity. This method is called automatically when the * number of keys in this map exceeds its capacity and load factor. * <p/> * Note that this method is a no-op if it's called with newCapacity == * 2*MAXIMUM_CAPACITY (which is Integer.MIN_VALUE). * * @param newCapacity the new capacity, MUST be a power of two. */ void resize(int newCapacity) { // assert (newCapacity & -newCapacity) == newCapacity; // power of 2 Entry<K,V>[] oldTable = getTable(); int oldCapacity = oldTable.length; // check if needed if ( size < threshold || oldCapacity > newCapacity ) return; Entry<K,V>[] newTable = new Entry[newCapacity]; transfer( oldTable, newTable ); table = newTable; /* * If ignoring null elements and processing ref queue caused massive * shrinkage, then restore old table. This should be rare, but avoids * unbounded expansion of garbage-filled tables. */ if ( size >= threshold / 2 ) { threshold = (int) ( newCapacity * loadFactor ); } else { expungeStaleEntries(); transfer( newTable, oldTable ); table = oldTable; } } /** * Transfer all entries from src to dest tables */ private void transfer(Entry<K,V>[] src, Entry<K,V>[] dest) { for ( int j = 0; j < src.length; ++j ) { Entry<K,V> e = src[j]; src[j] = null; while ( e != null ) { Entry<K,V> next = e.next; K key = e.get(); if ( key == null ) { e.next = null; // Help GC e.value = null; // " " size--; } else { int i = indexFor( e.hash, dest.length ); e.next = dest[i]; dest[i] = e; } e = next; } } } /** * Copies all of the mappings from the specified map to this map These * mappings will replace any mappings that this map had for any of the * keys currently in the specified map.<p> * * @param t mappings to be stored in this map. * @throws NullPointerException if the specified map is null. */ public void putAll(Map<? extends K, ? extends V> t) { // Expand enough to hold t's elements without resizing. int n = t.size(); if ( n == 0 ) return; if ( n >= threshold ) { n = (int) ( n / loadFactor + 1 ); if ( n > MAXIMUM_CAPACITY ) n = MAXIMUM_CAPACITY; int capacity = table.length; while ( capacity < n ) capacity <<= 1; resize( capacity ); } for ( Iterator i = t.entrySet().iterator(); i.hasNext(); ) { Map.Entry<K,V> e = (Map.Entry<K,V>) i.next(); //FIXME should not have to cast put( e.getKey(), e.getValue() ); } } /** * Removes the mapping for this key from this map if present. * * @param key key whose mapping is to be removed from the map. * @return previous value associated with specified key, or <tt>null</tt> * if there was no mapping for key. A <tt>null</tt> return can * also indicate that the map previously associated <tt>null</tt> * with the specified key. */ public V remove(Object key) { Object k = maskNull( key ); int h = hash( k ); Entry<K,V>[] tab = getTable(); int i = indexFor( h, tab.length ); Entry<K,V> prev = tab[i]; Entry<K,V> e = prev; while ( e != null ) { Entry<K,V> next = e.next; if ( h == e.hash && k == e.get() ) { modCount++; size--; if ( prev == e ) tab[i] = next; else prev.next = next; return e.value; } prev = e; e = next; } return null; } /** * Special version of remove needed by Entry set */ Entry removeMapping(Object o) { if ( !( o instanceof Map.Entry ) ) return null; Entry[] tab = getTable(); Map.Entry entry = (Map.Entry) o; Object k = maskNull( entry.getKey() ); int h = hash( k ); int i = indexFor( h, tab.length ); Entry prev = tab[i]; Entry e = prev; while ( e != null ) { Entry next = e.next; if ( h == e.hash && e.equals( entry ) ) { modCount++; size--; if ( prev == e ) tab[i] = next; else prev.next = next; return e; } prev = e; e = next; } return null; } /** * Removes all mappings from this map. */ public void clear() { // clear out ref queue. We don't need to expunge entries // since table is getting cleared. while ( queue.poll() != null ) ; modCount++; Entry tab[] = table; for ( int i = 0; i < tab.length; ++i ) tab[i] = null; size = 0; // Allocation of array may have caused GC, which may have caused // additional entries to go stale. Removing these entries from the // reference queue will make them eligible for reclamation. while ( queue.poll() != null ) ; } /** * Returns <tt>true</tt> if this map maps one or more keys to the * specified value. * * @param value value whose presence in this map is to be tested. * @return <tt>true</tt> if this map maps one or more keys to the * specified value. */ public boolean containsValue(Object value) { if ( value == null ) return containsNullValue(); Entry tab[] = getTable(); for ( int i = tab.length; i-- > 0; ) for ( Entry e = tab[i]; e != null; e = e.next ) if ( value.equals( e.value ) ) return true; return false; } /** * Special-case code for containsValue with null argument */ private boolean containsNullValue() { Entry tab[] = getTable(); for ( int i = tab.length; i-- > 0; ) for ( Entry e = tab[i]; e != null; e = e.next ) if ( e.value == null ) return true; return false; } /** * Remove elements having the according value. * Intended to avoid concurrent access exceptions * It is expected that nobody add a key being removed by value * * @param value value whose presence in this map is to be removed. * @return <tt>true</tt> if this map maps one or more keys to the * specified value. */ public boolean removeValue(Object value) { if ( value == null ) return removeNullValue(); Entry tab[] = getTable(); Set keys = new HashSet(); for ( int i = tab.length; i-- > 0; ) for ( Entry e = tab[i]; e != null; e = e.next ) if ( value.equals( e.value ) ) keys.add( e.getKey() ); for ( Object key : keys ) remove( key ); return !keys.isEmpty(); } /** * Special-case code for removeValue with null argument */ private boolean removeNullValue() { Entry tab[] = getTable(); Set keys = new HashSet(); for ( int i = tab.length; i-- > 0; ) for ( Entry e = tab[i]; e != null; e = e.next ) if ( e.value == null ) keys.add( e.getKey() ); for ( Object key : keys ) remove( key ); return !keys.isEmpty(); } /** * The entries in this hash table extend WeakReference, using its main ref * field as the key. */ private static class Entry<K,V> extends WeakReference<K> implements Map.Entry<K,V> { private V value; private final int hash; private Entry<K,V> next; /** * Create new entry. */ Entry(K key, V value, ReferenceQueue queue, int hash, Entry<K,V> next) { super( key, queue ); this.value = value; this.hash = hash; this.next = next; } public K getKey() { return WeakIdentityHashMap.unmaskNull( this.get() ); } public V getValue() { return value; } public V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } public boolean equals(Object o) { if ( !( o instanceof Map.Entry ) ) return false; Map.Entry e = (Map.Entry) o; Object k1 = getKey(); Object k2 = e.getKey(); if ( k1 == k2 ) { Object v1 = getValue(); Object v2 = e.getValue(); if ( v1 == v2 || ( v1 != null && v1.equals( v2 ) ) ) return true; } return false; } public int hashCode() { Object k = getKey(); Object v = getValue(); return ( ( k == null ? 0 : System.identityHashCode( k ) ) ^ ( v == null ? 0 : v.hashCode() ) ); } public String toString() { return getKey() + "=" + getValue(); } } private abstract class HashIterator<E> implements Iterator<E> { int index; Entry<K,V> entry = null; Entry<K,V> lastReturned = null; int expectedModCount = modCount; /** * Strong reference needed to avoid disappearance of key * between hasNext and next */ Object nextKey = null; /** * Strong reference needed to avoid disappearance of key * between nextEntry() and any use of the entry */ Object currentKey = null; HashIterator() { index = ( size() != 0 ? table.length : 0 ); } public boolean hasNext() { Entry[] t = table; while ( nextKey == null ) { Entry e = entry; int i = index; while ( e == null && i > 0 ) e = t[--i]; entry = e; index = i; if ( e == null ) { currentKey = null; return false; } nextKey = e.get(); // hold on to key in strong ref if ( nextKey == null ) entry = entry.next; } return true; } /** * The common parts of next() across different types of iterators */ protected Entry<K,V> nextEntry() { if ( modCount != expectedModCount ) throw new ConcurrentModificationException(); if ( nextKey == null && !hasNext() ) throw new NoSuchElementException(); lastReturned = entry; entry = entry.next; currentKey = nextKey; nextKey = null; return lastReturned; } public void remove() { if ( lastReturned == null ) throw new IllegalStateException(); if ( modCount != expectedModCount ) throw new ConcurrentModificationException(); WeakIdentityHashMap.this.remove( currentKey ); expectedModCount = modCount; lastReturned = null; currentKey = null; } } private class ValueIterator extends HashIterator { public Object next() { return nextEntry().value; } } private class KeyIterator extends HashIterator { public Object next() { return nextEntry().getKey(); } } private class EntryIterator extends HashIterator<Map.Entry<K,V>> { public Map.Entry<K,V> next() { return nextEntry(); } } // Views private transient Set<Map.Entry<K,V>> entrySet = null; /** * Returns a set view of the keys contained in this map. The set is * backed by the map, so changes to the map are reflected in the set, and * vice-versa. The set supports element removal, which removes the * corresponding mapping from this map, via the <tt>Iterator.remove</tt>, * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and * <tt>clear</tt> operations. It does not support the <tt>add</tt> or * <tt>addAll</tt> operations. * * @return a set view of the keys contained in this map. */ public Set keySet() { Set ks = keySet; return ( ks != null ? ks : ( keySet = new KeySet() ) ); } private class KeySet extends AbstractSet { public Iterator iterator() { return new KeyIterator(); } public int size() { return WeakIdentityHashMap.this.size(); } public boolean contains(Object o) { return containsKey( o ); } public boolean remove(Object o) { if ( containsKey( o ) ) { WeakIdentityHashMap.this.remove( o ); return true; } else return false; } public void clear() { WeakIdentityHashMap.this.clear(); } public Object[] toArray() { Collection c = new ArrayList( size() ); for ( Iterator i = iterator(); i.hasNext(); ) c.add( i.next() ); return c.toArray(); } public Object[] toArray(Object a[]) { Collection c = new ArrayList( size() ); for ( Iterator i = iterator(); i.hasNext(); ) c.add( i.next() ); return c.toArray( a ); } } /** * Returns a collection view of the values contained in this map. The * collection is backed by the map, so changes to the map are reflected in * the collection, and vice-versa. The collection supports element * removal, which removes the corresponding mapping from this map, via the * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>, * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations. * It does not support the <tt>add</tt> or <tt>addAll</tt> operations. * * @return a collection view of the values contained in this map. */ public Collection values() { Collection vs = values; return ( vs != null ? vs : ( values = new Values() ) ); } private class Values extends AbstractCollection { public Iterator iterator() { return new ValueIterator(); } public int size() { return WeakIdentityHashMap.this.size(); } public boolean contains(Object o) { return containsValue( o ); } public void clear() { WeakIdentityHashMap.this.clear(); } public Object[] toArray() { Collection c = new ArrayList( size() ); for ( Iterator i = iterator(); i.hasNext(); ) c.add( i.next() ); return c.toArray(); } public Object[] toArray(Object a[]) { Collection c = new ArrayList( size() ); for ( Iterator i = iterator(); i.hasNext(); ) c.add( i.next() ); return c.toArray( a ); } } /** * Returns a collection view of the mappings contained in this map. Each * element in the returned collection is a <tt>Map.Entry</tt>. The * collection is backed by the map, so changes to the map are reflected in * the collection, and vice-versa. The collection supports element * removal, which removes the corresponding mapping from the map, via the * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>, * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations. * It does not support the <tt>add</tt> or <tt>addAll</tt> operations. * * @return a collection view of the mappings contained in this map. * @see java.util.Map.Entry */ public Set<Map.Entry<K,V>> entrySet() { Set<Map.Entry<K,V>> es = entrySet; return ( es != null ? es : ( entrySet = new EntrySet() ) ); } private class EntrySet extends AbstractSet<Map.Entry<K,V>> { public Iterator<Map.Entry<K,V>> iterator() { return new EntryIterator(); } public boolean contains(Object o) { if ( !( o instanceof Map.Entry ) ) return false; Map.Entry e = (Map.Entry) o; Object k = e.getKey(); Entry candidate = getEntry( k ); return candidate != null && candidate.equals( e ); } public boolean remove(Object o) { return removeMapping( o ) != null; } public int size() { return WeakIdentityHashMap.this.size(); } public void clear() { WeakIdentityHashMap.this.clear(); } public Object[] toArray() { Collection c = new ArrayList( size() ); for ( Iterator i = iterator(); i.hasNext(); ) c.add( new SimpleEntry( (Map.Entry) i.next() ) ); return c.toArray(); } public Object[] toArray(Object a[]) { Collection c = new ArrayList( size() ); for ( Iterator i = iterator(); i.hasNext(); ) c.add( new SimpleEntry( (Map.Entry) i.next() ) ); return c.toArray( a ); } } static class SimpleEntry implements Map.Entry { Object key; Object value; public SimpleEntry(Object key, Object value) { this.key = key; this.value = value; } public SimpleEntry(Map.Entry e) { this.key = e.getKey(); this.value = e.getValue(); } public Object getKey() { return key; } public Object getValue() { return value; } public Object setValue(Object value) { Object oldValue = this.value; this.value = value; return oldValue; } public boolean equals(Object o) { if ( !( o instanceof Map.Entry ) ) return false; Map.Entry e = (Map.Entry) o; return eq( key, e.getKey() ) && eq( value, e.getValue() ); } public int hashCode() { return ( ( key == null ) ? 0 : key.hashCode() ) ^ ( ( value == null ) ? 0 : value.hashCode() ); } public String toString() { return key + "=" + value; } private static boolean eq(Object o1, Object o2) { return ( o1 == null ? o2 == null : o1.equals( o2 ) ); } } }