/* * Encog(tm) Core v2.5 - Java Version * http://www.heatonresearch.com/encog/ * http://code.google.com/p/encog-java/ * Copyright 2008-2010 Heaton Research, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * For more information on Heaton Research copyrights, licenses * and trademarks visit: * http://www.heatonresearch.com/copyright */ package org.encog.neural.networks; import java.io.IOException; import java.io.ObjectInputStream; import java.io.ObjectOutputStream; import java.io.Serializable; import java.util.ArrayList; import java.util.Collection; import java.util.HashMap; import java.util.Map; import java.util.Map.Entry; import org.encog.Encog; import org.encog.engine.util.EngineArray; import org.encog.engine.util.ErrorCalculation; import org.encog.mathutil.randomize.NguyenWidrowRandomizer; import org.encog.mathutil.randomize.RangeRandomizer; import org.encog.neural.NeuralNetworkError; import org.encog.neural.data.NeuralData; import org.encog.neural.data.NeuralDataPair; import org.encog.neural.data.NeuralDataSet; import org.encog.neural.data.basic.BasicNeuralData; import org.encog.neural.networks.layers.Layer; import org.encog.neural.networks.logic.NeuralLogic; import org.encog.neural.networks.logic.SimpleRecurrentLogic; import org.encog.neural.networks.structure.FlatUpdateNeeded; import org.encog.neural.networks.structure.NetworkCODEC; import org.encog.neural.networks.structure.NeuralStructure; import org.encog.neural.networks.synapse.Synapse; import org.encog.neural.networks.synapse.SynapseType; import org.encog.persist.BasicPersistedObject; import org.encog.persist.Persistor; import org.encog.persist.persistors.BasicNetworkPersistor; import org.encog.util.csv.CSVFormat; import org.encog.util.csv.NumberList; import org.encog.util.obj.ObjectCloner; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** * This class implements a neural network. This class works in conjunction the * Layer classes. Layers are added to the BasicNetwork to specify the structure * of the neural network. * * The first layer added is the input layer, the final layer added is the output * layer. Any layers added between these two layers are the hidden layers. * * The network structure is stored in the structure member. It is important to * call: * * network.getStructure().finalizeStructure(); * * Once the neural network has been completely constructed. * */ public class BasicNetwork extends BasicPersistedObject implements Serializable, Network, ContextClearable { /** * Tag used for the input layer. */ public static final String TAG_INPUT = "INPUT"; /** * Tag used for the output layer. */ public static final String TAG_OUTPUT = "OUTPUT"; /** * Tag used for the connection limit. */ public static final String TAG_LIMIT = "CONNECTION_LIMIT"; public static final String DEFAULT_CONNECTION_LIMIT = "0.0000000001"; /** * Serial id for this class. */ private static final long serialVersionUID = -136440631687066461L; /** * The logging object. */ private static final transient Logger LOGGER = LoggerFactory .getLogger(BasicNetwork.class); /** * Determine which member of the output is the winning neuron. * * @param output * The output from the neural network. * @return The winning neuron. */ public static int determineWinner(final NeuralData output) { int win = 0; double biggest = Double.MIN_VALUE; for (int i = 0; i < output.size(); i++) { if (output.getData(i) > biggest) { biggest = output.getData(i); win = i; } } return win; } /** * Holds the structure of the network. This keeps the network from having to * constantly lookup layers and synapses. */ private final NeuralStructure structure; /** * This class tells the network how to calculate the output for each of the * layers. */ private NeuralLogic logic; /** * Properties about the neural network. Some NeuralLogic classes require * certain properties to be set. */ private final Map<String, String> properties = new HashMap<String, String>(); /** * The tags for the layers. */ private final Map<String, Layer> layerTags = new HashMap<String, Layer>(); /** * Construct an empty neural network. */ public BasicNetwork() { this.structure = new NeuralStructure(this); this.logic = new SimpleRecurrentLogic(); } /** * Construct a basic network using the specified logic. * * @param logic * The logic to use with the neural network. */ public BasicNetwork(final NeuralLogic logic) { this.structure = new NeuralStructure(this); this.logic = logic; } /** * Add a layer to the neural network. The first layer added is the input * layer, the last layer added is the output layer. This layer is added with * a weighted synapse. * * @param layer * The layer to be added. */ public void addLayer(final Layer layer) { layer.setNetwork(this); this.structure.assignID(layer); addLayer(layer, SynapseType.Weighted); } /** * Add a layer to the neural network. If there are no layers added this * layer will become the input layer. This function automatically updates * both the input and output layer references. * * @param layer * The layer to be added to the network. * @param type * What sort of synapse should connect this layer to the last. */ public void addLayer(final Layer layer, final SynapseType type) { // is this the first layer? If so, mark as the input layer. if (this.layerTags.size() == 0) { tagLayer(BasicNetwork.TAG_INPUT, layer); tagLayer(BasicNetwork.TAG_OUTPUT, layer); } else { // add the layer to any previous layers final Layer outputLayer = getLayer(BasicNetwork.TAG_OUTPUT); outputLayer.addNext(layer, type); tagLayer(BasicNetwork.TAG_OUTPUT, layer); } } /** * Calculate the error for this neural network. The error is calculated * using root-mean-square(RMS). * * @param data * The training set. * @return The error percentage. */ public double calculateError(final NeuralDataSet data) { final ErrorCalculation errorCalculation = new ErrorCalculation(); clearContext(); for (final NeuralDataPair pair : data) { final NeuralData actual = compute(pair.getInput()); errorCalculation.updateError(actual.getData(), pair.getIdeal() .getData()); } return errorCalculation.calculate(); } /** * Calculate the total number of neurons in the network across all layers. * * @return The neuron count. */ public int calculateNeuronCount() { int result = 0; for (final Layer layer : this.structure.getLayers()) { result += layer.getNeuronCount(); } return result; } /** * Clear any data from any context layers. */ public void clearContext() { for (final Layer layer : this.structure.getLayers()) { if (layer instanceof ContextClearable) { ((ContextClearable) layer).clearContext(); } } for (final Synapse synapse : this.structure.getSynapses()) { if (synapse instanceof ContextClearable) { ((ContextClearable) synapse).clearContext(); } } this.structure.updateFlatNetwork(); if (this.structure.getFlat() != null) { this.structure.getFlat().clearContext(); } } /** * Remove all layer tags. */ public void clearLayerTags() { this.layerTags.clear(); } /** * Return a clone of this neural network. Including structure, weights and * bias values. This is a deep copy. * * @return A cloned copy of the neural network. */ @Override public Object clone() { final BasicNetwork result = (BasicNetwork) ObjectCloner.deepCopy(this); result.getStructure().finalizeStructure(); return result; } /** * {@inheritDoc} */ @Override public void compute(final double[] input, final double[] output) { final BasicNeuralData input2 = new BasicNeuralData(input); final NeuralData output2 = this.compute(input2); EngineArray.arrayCopy(output2.getData(), output); } /** * Compute the output for a given input to the neural network. * * @param input * The input to the neural network. * @return The output from the neural network. */ public NeuralData compute(final NeuralData input) { try { return this.logic.compute(input, null); } catch (final ArrayIndexOutOfBoundsException ex) { throw new NeuralNetworkError( "Index exception: there was likely a mismatch between layer sizes, or the size of the input presented to the network.", ex); } } /** * Compute the output for a given input to the neural network. This method * provides a parameter to specify an output holder to use. This holder * allows propagation training to track the output from each layer. If you * do not need this holder pass null, or use the other compare method. * * @param input * The input provide to the neural network. * @param useHolder * Allows a holder to be specified, this allows propagation * training to check the output of each layer. * @return The results from the output neurons. */ public NeuralData compute(final NeuralData input, final NeuralOutputHolder useHolder) { return this.logic.compute(input, useHolder); } /** * Create a persistor for this object. * * @return The newly created persistor. */ @Override public Persistor createPersistor() { return new BasicNetworkPersistor(); } /** * @return The weights as a comma separated list. */ public String dumpWeights() { this.structure.updateFlatNetwork(); final StringBuilder result = new StringBuilder(); NumberList.toList(CSVFormat.EG_FORMAT, result, this.structure.getFlat() .getWeights()); return result.toString(); } /** * Enable, or disable, a connection. * @param synapse The synapse that contains the connection. * @param fromNeuron The source neuron. * @param toNeuron The target connection. * @param enable True to enable, false to disable. */ public void enableConnection(final Synapse synapse, final int fromNeuron, final int toNeuron, final boolean enable) { if (synapse.getMatrix() == null) { throw new NeuralNetworkError( "Can't enable/disable connection on a synapse that does not have a weight matrix."); } final double value = synapse.getMatrix().get(fromNeuron, toNeuron); if (enable) { if (!this.structure.isConnectionLimited()) { return; } if (Math.abs(value) < this.structure.getConnectionLimit()) { synapse.getMatrix().set(fromNeuron, toNeuron, RangeRandomizer.randomize(-1, 1)); } } else { if (!this.structure.isConnectionLimited()) { this.properties.put(BasicNetwork.TAG_LIMIT, BasicNetwork.DEFAULT_CONNECTION_LIMIT); this.structure.finalizeStructure(); } synapse.getMatrix().set(fromNeuron, toNeuron, 0); } this.structure.setFlatUpdate(FlatUpdateNeeded.Flatten); } /** * Compare the two neural networks. For them to be equal they must be of the * same structure, and have the same matrix values. * * @param other * The other neural network. * @return True if the two networks are equal. */ public boolean equals(final BasicNetwork other) { return equals(other, Encog.DEFAULT_PRECISION); } /** * Determine if this neural network is equal to another. Equal neural * networks have the same weight matrix and bias values, within a specified * precision. * * @param other * The other neural network. * @param precision * The number of decimal places to compare to. * @return True if the two neural networks are equal. */ public boolean equals(final BasicNetwork other, final int precision) { return NetworkCODEC.equals(this, other, precision); } /** * {@inheritDoc} */ public int getInputCount() { final Layer layer = this.layerTags.get(BasicNetwork.TAG_INPUT); if (layer == null) { return 0; } else { return layer.getNeuronCount(); } } /** * Get the layer specified by the tag. * * @param tag * The tag. * @return The layer associated with that tag. */ public Layer getLayer(final String tag) { return this.layerTags.get(tag); } /** * @return The map of all layer tags. */ public Map<String, Layer> getLayerTags() { return this.layerTags; } /** * @return The logic used by this network. */ public NeuralLogic getLogic() { return this.logic; } /** * {@inheritDoc} */ public int getOutputCount() { final Layer layer = this.layerTags.get(BasicNetwork.TAG_OUTPUT); if (layer == null) { return 0; } else { return layer.getNeuronCount(); } } /** * @return A map of all properties. */ public Map<String, String> getProperties() { return this.properties; } /** * Get the specified property as a double. * * @param name * The name of the property. * @return The property as a double. */ public double getPropertyDouble(final String name) { return Double.parseDouble(this.properties.get(name)); } /** * Get the specified property as a long. * * @param name * The name of the specified property. * @return The value of the specified property. */ public long getPropertyLong(final String name) { return Long.parseLong(this.properties.get(name)); } /** * Get the specified property as a string. * * @param name * The name of the property. * @return The value of the property. */ public String getPropertyString(final String name) { return this.properties.get(name); } /** * @return Get the structure of the neural network. The structure allows you * to quickly obtain synapses and layers without traversing the * network. */ public NeuralStructure getStructure() { return this.structure; } /** * Get a list of all of the tags on a specific layer. * * @param layer * The layer to check. * @return A collection of the layer tags. */ public Collection<String> getTags(final Layer layer) { final Collection<String> result = new ArrayList<String>(); for (final Entry<String, Layer> entry : this.layerTags.entrySet()) { if (entry.getValue() == layer) { result.add(entry.getKey()); } } return result; } /** * @return The size of the matrix. */ public int getWeightMatrixSize() { int result = 0; for (final Synapse synapse : this.structure.getSynapses()) { result += synapse.getMatrixSize(); } return result; } /** * Generate a hash code. * * @return THe hash code. */ @Override public int hashCode() { return super.hashCode(); } /** * Determine if the specified connection is enabled. * @param synapse The synapse. * @param fromNeuron The source neuron. * @param toNeuron THe target neuron. * @return True, if the connection is enabled, false otherwise. */ public boolean isConnected(final Synapse synapse, final int fromNeuron, final int toNeuron) { if (!this.structure.isConnectionLimited()) { return true; } final double value = synapse.getMatrix().get(fromNeuron, toNeuron); return (Math.abs(value) > this.structure.getConnectionLimit()); } /** * Reset the weight matrix and the bias values. This will use a * Nguyen-Widrow randomizer with a range between -1 and 1. If the network * does not have an input, output or hidden layers, then Nguyen-Widrow * cannot be used and a simple range randomize between -1 and 1 will be * used. * */ public void reset() { final Layer inputLayer = getLayer(BasicNetwork.TAG_INPUT); final Layer outputLayer = getLayer(BasicNetwork.TAG_OUTPUT); if ((this.structure.getLayers().size() < 3) || (inputLayer == null) || (outputLayer == null)) { (new RangeRandomizer(-1, 1)).randomize(this); } else { (new NguyenWidrowRandomizer(-1, 1)).randomize(this); } this.structure.setFlatUpdate(FlatUpdateNeeded.Flatten); this.structure.flattenWeights(); } /** * Sets the bias activation for every layer that supports bias. Make sure * that the network structure has been finalized before calling this method. * * @param activation * THe new activation. */ public void setBiasActivation(final double activation) { for (final Layer layer : this.structure.getLayers()) { if (layer.hasBias()) { layer.setBiasActivation(activation); } } } /** * Set the type of logic this network should use. * * @param logic * The logic used by the network. */ public void setLogic(final NeuralLogic logic) { this.logic = logic; } /** * Set a property as a double. * * @param name * The name of the property. * @param d * The value of the property. */ public void setProperty(final String name, final double d) { this.properties.put(name, "" + d); } /** * Set a property as a long. * * @param name * The name of the property. * @param l * The value of the property. */ public void setProperty(final String name, final long l) { this.properties.put(name, "" + l); } /** * Set a property as a double. * * @param name * The name of the property. * @param value * The value of the property. */ public void setProperty(final String name, final String value) { this.properties.put(name, value); } /** * Tag a layer. * * @param tag * The tag name. * @param layer * THe layer to tag. */ public void tagLayer(final String tag, final Layer layer) { layer.setNetwork(this); this.layerTags.put(tag, layer); } /** * {@inheritDoc} */ @Override public String toString() { final StringBuilder builder = new StringBuilder(); builder.append("[BasicNetwork: Layers="); final int layers = this.structure.getLayers().size(); builder.append(layers); builder.append("]"); return builder.toString(); } /** * Determine the winner for the specified input. This is the number of the * winning neuron. * * @param input * The input patter to present to the neural network. * @return The winning neuron. */ public int winner(final NeuralData input) { final NeuralData output = compute(input); return BasicNetwork.determineWinner(output); } /** * Make sure that the network has been flattened before being written. * @param stream The output stream. * @throws IOException Thrown if an IO error occurs. */ private void writeObject(ObjectOutputStream stream) throws IOException { this.structure.updateFlatNetwork(); stream.defaultWriteObject(); } /** * Read the network, and make sure the structure is up to date after reading. * @param stream The output stream. * @throws IOException Thrown if an IO error occurs. */ private void readObject(ObjectInputStream stream) throws IOException, ClassNotFoundException { stream.defaultReadObject(); this.structure.finalizeStructure(); } }