/* * Copyright (c) 2003, 2008, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package sun.security.rsa; import java.math.BigInteger; import java.security.*; import java.security.spec.AlgorithmParameterSpec; import java.security.spec.RSAKeyGenParameterSpec; import sun.security.jca.JCAUtil; /** * RSA keypair generation. Standard algorithm, minimum key length 512 bit. * We generate two random primes until we find two where phi is relative * prime to the public exponent. Default exponent is 65537. It has only bit 0 * and bit 4 set, which makes it particularly efficient. * * @since 1.5 * @author Andreas Sterbenz */ public final class RSAKeyPairGenerator extends KeyPairGeneratorSpi { // public exponent to use private BigInteger publicExponent; // size of the key to generate, >= RSAKeyFactory.MIN_MODLEN private int keySize; // PRNG to use private SecureRandom random; public RSAKeyPairGenerator() { // initialize to default in case the app does not call initialize() initialize(1024, null); } // initialize the generator. See JCA doc public void initialize(int keySize, SecureRandom random) { // do not allow unreasonably small or large key sizes, // probably user error try { RSAKeyFactory.checkKeyLengths(keySize, RSAKeyGenParameterSpec.F4, 512, 64 * 1024); } catch (InvalidKeyException e) { throw new InvalidParameterException(e.getMessage()); } this.keySize = keySize; this.random = random; this.publicExponent = RSAKeyGenParameterSpec.F4; } // second initialize method. See JCA doc. public void initialize(AlgorithmParameterSpec params, SecureRandom random) throws InvalidAlgorithmParameterException { if (params instanceof RSAKeyGenParameterSpec == false) { throw new InvalidAlgorithmParameterException ("Params must be instance of RSAKeyGenParameterSpec"); } RSAKeyGenParameterSpec rsaSpec = (RSAKeyGenParameterSpec)params; int tmpKeySize = rsaSpec.getKeysize(); BigInteger tmpPublicExponent = rsaSpec.getPublicExponent(); if (tmpPublicExponent == null) { tmpPublicExponent = RSAKeyGenParameterSpec.F4; } else { if (tmpPublicExponent.compareTo(RSAKeyGenParameterSpec.F0) < 0) { throw new InvalidAlgorithmParameterException ("Public exponent must be 3 or larger"); } if (tmpPublicExponent.bitLength() > tmpKeySize) { throw new InvalidAlgorithmParameterException ("Public exponent must be smaller than key size"); } } // do not allow unreasonably large key sizes, probably user error try { RSAKeyFactory.checkKeyLengths(tmpKeySize, tmpPublicExponent, 512, 64 * 1024); } catch (InvalidKeyException e) { throw new InvalidAlgorithmParameterException( "Invalid key sizes", e); } this.keySize = tmpKeySize; this.publicExponent = tmpPublicExponent; this.random = random; } // generate the keypair. See JCA doc public KeyPair generateKeyPair() { // accomodate odd key sizes in case anybody wants to use them int lp = (keySize + 1) >> 1; int lq = keySize - lp; if (random == null) { random = JCAUtil.getSecureRandom(); } BigInteger e = publicExponent; while (true) { // generate two random primes of size lp/lq BigInteger p = BigInteger.probablePrime(lp, random); BigInteger q, n; do { q = BigInteger.probablePrime(lq, random); // convention is for p > q if (p.compareTo(q) < 0) { BigInteger tmp = p; p = q; q = tmp; } // modulus n = p * q n = p.multiply(q); // even with correctly sized p and q, there is a chance that // n will be one bit short. re-generate the smaller prime if so } while (n.bitLength() < keySize); // phi = (p - 1) * (q - 1) must be relative prime to e // otherwise RSA just won't work ;-) BigInteger p1 = p.subtract(BigInteger.ONE); BigInteger q1 = q.subtract(BigInteger.ONE); BigInteger phi = p1.multiply(q1); // generate new p and q until they work. typically // the first try will succeed when using F4 if (e.gcd(phi).equals(BigInteger.ONE) == false) { continue; } // private exponent d is the inverse of e mod phi BigInteger d = e.modInverse(phi); // 1st prime exponent pe = d mod (p - 1) BigInteger pe = d.mod(p1); // 2nd prime exponent qe = d mod (q - 1) BigInteger qe = d.mod(q1); // crt coefficient coeff is the inverse of q mod p BigInteger coeff = q.modInverse(p); try { PublicKey publicKey = new RSAPublicKeyImpl(n, e); PrivateKey privateKey = new RSAPrivateCrtKeyImpl(n, e, d, p, q, pe, qe, coeff); return new KeyPair(publicKey, privateKey); } catch (InvalidKeyException exc) { // invalid key exception only thrown for keys < 512 bit, // will not happen here throw new RuntimeException(exc); } } } }