/* * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.util.stream; import java.util.Comparator; import java.util.Iterator; import java.util.Objects; import java.util.Optional; import java.util.Spliterator; import java.util.Spliterators; import java.util.function.BiConsumer; import java.util.function.BiFunction; import java.util.function.BinaryOperator; import java.util.function.Consumer; import java.util.function.DoubleConsumer; import java.util.function.Function; import java.util.function.IntConsumer; import java.util.function.IntFunction; import java.util.function.LongConsumer; import java.util.function.Predicate; import java.util.function.Supplier; import java.util.function.ToDoubleFunction; import java.util.function.ToIntFunction; import java.util.function.ToLongFunction; /** * Abstract base class for an intermediate pipeline stage or pipeline source * stage implementing whose elements are of type {@code U}. * * @param <P_IN> type of elements in the upstream source * @param <P_OUT> type of elements in produced by this stage * * @since 1.8 */ abstract class ReferencePipeline<P_IN, P_OUT> extends AbstractPipeline<P_IN, P_OUT, Stream<P_OUT>> implements Stream<P_OUT> { /** * Constructor for the head of a stream pipeline. * * @param source {@code Supplier<Spliterator>} describing the stream source * @param sourceFlags the source flags for the stream source, described in * {@link StreamOpFlag} * @param parallel {@code true} if the pipeline is parallel */ ReferencePipeline(Supplier<? extends Spliterator<?>> source, int sourceFlags, boolean parallel) { super(source, sourceFlags, parallel); } /** * Constructor for the head of a stream pipeline. * * @param source {@code Spliterator} describing the stream source * @param sourceFlags The source flags for the stream source, described in * {@link StreamOpFlag} * @param parallel {@code true} if the pipeline is parallel */ ReferencePipeline(Spliterator<?> source, int sourceFlags, boolean parallel) { super(source, sourceFlags, parallel); } /** * Constructor for appending an intermediate operation onto an existing * pipeline. * * @param upstream the upstream element source. */ ReferencePipeline(AbstractPipeline<?, P_IN, ?> upstream, int opFlags) { super(upstream, opFlags); } // Shape-specific methods @Override final StreamShape getOutputShape() { return StreamShape.REFERENCE; } @Override final <P_IN> Node<P_OUT> evaluateToNode(PipelineHelper<P_OUT> helper, Spliterator<P_IN> spliterator, boolean flattenTree, IntFunction<P_OUT[]> generator) { return Nodes.collect(helper, spliterator, flattenTree, generator); } @Override final <P_IN> Spliterator<P_OUT> wrap(PipelineHelper<P_OUT> ph, Supplier<Spliterator<P_IN>> supplier, boolean isParallel) { return new StreamSpliterators.WrappingSpliterator<>(ph, supplier, isParallel); } @Override final Spliterator<P_OUT> lazySpliterator(Supplier<? extends Spliterator<P_OUT>> supplier) { return new StreamSpliterators.DelegatingSpliterator<>(supplier); } @Override final void forEachWithCancel(Spliterator<P_OUT> spliterator, Sink<P_OUT> sink) { do { } while (!sink.cancellationRequested() && spliterator.tryAdvance(sink)); } @Override final Node.Builder<P_OUT> makeNodeBuilder(long exactSizeIfKnown, IntFunction<P_OUT[]> generator) { return Nodes.builder(exactSizeIfKnown, generator); } // BaseStream @Override public final Iterator<P_OUT> iterator() { return Spliterators.iterator(spliterator()); } // Stream // Stateless intermediate operations from Stream @Override public Stream<P_OUT> unordered() { if (!isOrdered()) return this; return new StatelessOp<P_OUT, P_OUT>(this, StreamShape.REFERENCE, StreamOpFlag.NOT_ORDERED) { @Override Sink<P_OUT> opWrapSink(int flags, Sink<P_OUT> sink) { return sink; } }; } @Override public final Stream<P_OUT> filter(Predicate<? super P_OUT> predicate) { Objects.requireNonNull(predicate); return new StatelessOp<P_OUT, P_OUT>(this, StreamShape.REFERENCE, StreamOpFlag.NOT_SIZED) { @Override Sink<P_OUT> opWrapSink(int flags, Sink<P_OUT> sink) { return new Sink.ChainedReference<P_OUT, P_OUT>(sink) { @Override public void begin(long size) { downstream.begin(-1); } @Override public void accept(P_OUT u) { if (predicate.test(u)) downstream.accept(u); } }; } }; } @Override @SuppressWarnings("unchecked") public final <R> Stream<R> map(Function<? super P_OUT, ? extends R> mapper) { Objects.requireNonNull(mapper); return new StatelessOp<P_OUT, R>(this, StreamShape.REFERENCE, StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) { @Override Sink<P_OUT> opWrapSink(int flags, Sink<R> sink) { return new Sink.ChainedReference<P_OUT, R>(sink) { @Override public void accept(P_OUT u) { downstream.accept(mapper.apply(u)); } }; } }; } @Override public final IntStream mapToInt(ToIntFunction<? super P_OUT> mapper) { Objects.requireNonNull(mapper); return new IntPipeline.StatelessOp<P_OUT>(this, StreamShape.REFERENCE, StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) { @Override Sink<P_OUT> opWrapSink(int flags, Sink<Integer> sink) { return new Sink.ChainedReference<P_OUT, Integer>(sink) { @Override public void accept(P_OUT u) { downstream.accept(mapper.applyAsInt(u)); } }; } }; } @Override public final LongStream mapToLong(ToLongFunction<? super P_OUT> mapper) { Objects.requireNonNull(mapper); return new LongPipeline.StatelessOp<P_OUT>(this, StreamShape.REFERENCE, StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) { @Override Sink<P_OUT> opWrapSink(int flags, Sink<Long> sink) { return new Sink.ChainedReference<P_OUT, Long>(sink) { @Override public void accept(P_OUT u) { downstream.accept(mapper.applyAsLong(u)); } }; } }; } @Override public final DoubleStream mapToDouble(ToDoubleFunction<? super P_OUT> mapper) { Objects.requireNonNull(mapper); return new DoublePipeline.StatelessOp<P_OUT>(this, StreamShape.REFERENCE, StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) { @Override Sink<P_OUT> opWrapSink(int flags, Sink<Double> sink) { return new Sink.ChainedReference<P_OUT, Double>(sink) { @Override public void accept(P_OUT u) { downstream.accept(mapper.applyAsDouble(u)); } }; } }; } @Override public final <R> Stream<R> flatMap(Function<? super P_OUT, ? extends Stream<? extends R>> mapper) { Objects.requireNonNull(mapper); // We can do better than this, by polling cancellationRequested when stream is infinite return new StatelessOp<P_OUT, R>(this, StreamShape.REFERENCE, StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT | StreamOpFlag.NOT_SIZED) { @Override Sink<P_OUT> opWrapSink(int flags, Sink<R> sink) { return new Sink.ChainedReference<P_OUT, R>(sink) { @Override public void begin(long size) { downstream.begin(-1); } @Override public void accept(P_OUT u) { try (Stream<? extends R> result = mapper.apply(u)) { // We can do better that this too; optimize for depth=0 case and just grab spliterator and forEach it if (result != null) result.sequential().forEach(downstream); } } }; } }; } @Override public final IntStream flatMapToInt(Function<? super P_OUT, ? extends IntStream> mapper) { Objects.requireNonNull(mapper); // We can do better than this, by polling cancellationRequested when stream is infinite return new IntPipeline.StatelessOp<P_OUT>(this, StreamShape.REFERENCE, StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT | StreamOpFlag.NOT_SIZED) { @Override Sink<P_OUT> opWrapSink(int flags, Sink<Integer> sink) { return new Sink.ChainedReference<P_OUT, Integer>(sink) { IntConsumer downstreamAsInt = downstream::accept; @Override public void begin(long size) { downstream.begin(-1); } @Override public void accept(P_OUT u) { try (IntStream result = mapper.apply(u)) { // We can do better that this too; optimize for depth=0 case and just grab spliterator and forEach it if (result != null) result.sequential().forEach(downstreamAsInt); } } }; } }; } @Override public final DoubleStream flatMapToDouble(Function<? super P_OUT, ? extends DoubleStream> mapper) { Objects.requireNonNull(mapper); // We can do better than this, by polling cancellationRequested when stream is infinite return new DoublePipeline.StatelessOp<P_OUT>(this, StreamShape.REFERENCE, StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT | StreamOpFlag.NOT_SIZED) { @Override Sink<P_OUT> opWrapSink(int flags, Sink<Double> sink) { return new Sink.ChainedReference<P_OUT, Double>(sink) { DoubleConsumer downstreamAsDouble = downstream::accept; @Override public void begin(long size) { downstream.begin(-1); } @Override public void accept(P_OUT u) { try (DoubleStream result = mapper.apply(u)) { // We can do better that this too; optimize for depth=0 case and just grab spliterator and forEach it if (result != null) result.sequential().forEach(downstreamAsDouble); } } }; } }; } @Override public final LongStream flatMapToLong(Function<? super P_OUT, ? extends LongStream> mapper) { Objects.requireNonNull(mapper); // We can do better than this, by polling cancellationRequested when stream is infinite return new LongPipeline.StatelessOp<P_OUT>(this, StreamShape.REFERENCE, StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT | StreamOpFlag.NOT_SIZED) { @Override Sink<P_OUT> opWrapSink(int flags, Sink<Long> sink) { return new Sink.ChainedReference<P_OUT, Long>(sink) { LongConsumer downstreamAsLong = downstream::accept; @Override public void begin(long size) { downstream.begin(-1); } @Override public void accept(P_OUT u) { try (LongStream result = mapper.apply(u)) { // We can do better that this too; optimize for depth=0 case and just grab spliterator and forEach it if (result != null) result.sequential().forEach(downstreamAsLong); } } }; } }; } @Override public final Stream<P_OUT> peek(Consumer<? super P_OUT> action) { Objects.requireNonNull(action); return new StatelessOp<P_OUT, P_OUT>(this, StreamShape.REFERENCE, 0) { @Override Sink<P_OUT> opWrapSink(int flags, Sink<P_OUT> sink) { return new Sink.ChainedReference<P_OUT, P_OUT>(sink) { @Override public void accept(P_OUT u) { action.accept(u); downstream.accept(u); } }; } }; } // Stateful intermediate operations from Stream @Override public final Stream<P_OUT> distinct() { return DistinctOps.makeRef(this); } @Override public final Stream<P_OUT> sorted() { return SortedOps.makeRef(this); } @Override public final Stream<P_OUT> sorted(Comparator<? super P_OUT> comparator) { return SortedOps.makeRef(this, comparator); } private Stream<P_OUT> slice(long skip, long limit) { return SliceOps.makeRef(this, skip, limit); } @Override public final Stream<P_OUT> limit(long maxSize) { if (maxSize < 0) throw new IllegalArgumentException(Long.toString(maxSize)); return slice(0, maxSize); } @Override public final Stream<P_OUT> substream(long startingOffset) { if (startingOffset < 0) throw new IllegalArgumentException(Long.toString(startingOffset)); if (startingOffset == 0) return this; else return slice(startingOffset, -1); } @Override public final Stream<P_OUT> substream(long startingOffset, long endingOffset) { if (startingOffset < 0 || endingOffset < startingOffset) throw new IllegalArgumentException(String.format("substream(%d, %d)", startingOffset, endingOffset)); return slice(startingOffset, endingOffset - startingOffset); } // Terminal operations from Stream @Override public void forEach(Consumer<? super P_OUT> action) { evaluate(ForEachOps.makeRef(action, false)); } @Override public void forEachOrdered(Consumer<? super P_OUT> action) { evaluate(ForEachOps.makeRef(action, true)); } @Override @SuppressWarnings("unchecked") public final <A> A[] toArray(IntFunction<A[]> generator) { // Since A has no relation to U (not possible to declare that A is an upper bound of U) // there will be no static type checking. // Therefore use a raw type and assume A == U rather than propagating the separation of A and U // throughout the code-base. // The runtime type of U is never checked for equality with the component type of the runtime type of A[]. // Runtime checking will be performed when an element is stored in A[], thus if A is not a // super type of U an ArrayStoreException will be thrown. @SuppressWarnings("rawtypes") IntFunction rawGenerator = (IntFunction) generator; return (A[]) Nodes.flatten(evaluateToArrayNode(rawGenerator), rawGenerator) .asArray(rawGenerator); } @Override public final Object[] toArray() { return toArray(Object[]::new); } @Override public final boolean anyMatch(Predicate<? super P_OUT> predicate) { return evaluate(MatchOps.makeRef(predicate, MatchOps.MatchKind.ANY)); } @Override public final boolean allMatch(Predicate<? super P_OUT> predicate) { return evaluate(MatchOps.makeRef(predicate, MatchOps.MatchKind.ALL)); } @Override public final boolean noneMatch(Predicate<? super P_OUT> predicate) { return evaluate(MatchOps.makeRef(predicate, MatchOps.MatchKind.NONE)); } @Override public final Optional<P_OUT> findFirst() { return evaluate(FindOps.makeRef(true)); } @Override public final Optional<P_OUT> findAny() { return evaluate(FindOps.makeRef(false)); } @Override public final P_OUT reduce(final P_OUT identity, final BinaryOperator<P_OUT> accumulator) { return evaluate(ReduceOps.makeRef(identity, accumulator, accumulator)); } @Override public final Optional<P_OUT> reduce(BinaryOperator<P_OUT> accumulator) { return evaluate(ReduceOps.makeRef(accumulator)); } @Override public final <R> R reduce(R identity, BiFunction<R, ? super P_OUT, R> accumulator, BinaryOperator<R> combiner) { return evaluate(ReduceOps.makeRef(identity, accumulator, combiner)); } @Override @SuppressWarnings("unchecked") public final <R, A> R collect(Collector<? super P_OUT, A, R> collector) { A container; if (isParallel() && (collector.characteristics().contains(Collector.Characteristics.CONCURRENT)) && (!isOrdered() || collector.characteristics().contains(Collector.Characteristics.UNORDERED))) { container = collector.supplier().get(); BiConsumer<A, ? super P_OUT> accumulator = collector.accumulator(); forEach(u -> accumulator.accept(container, u)); } else { container = evaluate(ReduceOps.makeRef(collector)); } return collector.characteristics().contains(Collector.Characteristics.IDENTITY_FINISH) ? (R) container : collector.finisher().apply(container); } @Override public final <R> R collect(Supplier<R> supplier, BiConsumer<R, ? super P_OUT> accumulator, BiConsumer<R, R> combiner) { return evaluate(ReduceOps.makeRef(supplier, accumulator, combiner)); } @Override public final Optional<P_OUT> max(Comparator<? super P_OUT> comparator) { return reduce(BinaryOperator.maxBy(comparator)); } @Override public final Optional<P_OUT> min(Comparator<? super P_OUT> comparator) { return reduce(BinaryOperator.minBy(comparator)); } @Override public final long count() { return mapToLong(e -> 1L).sum(); } // /** * Source stage of a ReferencePipeline. * * @param <E_IN> type of elements in the upstream source * @param <E_OUT> type of elements in produced by this stage * @since 1.8 */ static class Head<E_IN, E_OUT> extends ReferencePipeline<E_IN, E_OUT> { /** * Constructor for the source stage of a Stream. * * @param source {@code Supplier<Spliterator>} describing the stream * source * @param sourceFlags the source flags for the stream source, described * in {@link StreamOpFlag} */ Head(Supplier<? extends Spliterator<?>> source, int sourceFlags, boolean parallel) { super(source, sourceFlags, parallel); } /** * Constructor for the source stage of a Stream. * * @param source {@code Spliterator} describing the stream source * @param sourceFlags the source flags for the stream source, described * in {@link StreamOpFlag} */ Head(Spliterator<?> source, int sourceFlags, boolean parallel) { super(source, sourceFlags, parallel); } @Override final boolean opIsStateful() { throw new UnsupportedOperationException(); } @Override final Sink<E_IN> opWrapSink(int flags, Sink<E_OUT> sink) { throw new UnsupportedOperationException(); } // Optimized sequential terminal operations for the head of the pipeline @Override public void forEach(Consumer<? super E_OUT> action) { if (!isParallel()) { sourceStageSpliterator().forEachRemaining(action); } else { super.forEach(action); } } @Override public void forEachOrdered(Consumer<? super E_OUT> action) { if (!isParallel()) { sourceStageSpliterator().forEachRemaining(action); } else { super.forEachOrdered(action); } } } /** * Base class for a stateless intermediate stage of a Stream. * * @param <E_IN> type of elements in the upstream source * @param <E_OUT> type of elements in produced by this stage * @since 1.8 */ abstract static class StatelessOp<E_IN, E_OUT> extends ReferencePipeline<E_IN, E_OUT> { /** * Construct a new Stream by appending a stateless intermediate * operation to an existing stream. * * @param upstream The upstream pipeline stage * @param inputShape The stream shape for the upstream pipeline stage * @param opFlags Operation flags for the new stage */ StatelessOp(AbstractPipeline<?, E_IN, ?> upstream, StreamShape inputShape, int opFlags) { super(upstream, opFlags); assert upstream.getOutputShape() == inputShape; } @Override final boolean opIsStateful() { return false; } } /** * Base class for a stateful intermediate stage of a Stream. * * @param <E_IN> type of elements in the upstream source * @param <E_OUT> type of elements in produced by this stage * @since 1.8 */ abstract static class StatefulOp<E_IN, E_OUT> extends ReferencePipeline<E_IN, E_OUT> { /** * Construct a new Stream by appending a stateful intermediate operation * to an existing stream. * @param upstream The upstream pipeline stage * @param inputShape The stream shape for the upstream pipeline stage * @param opFlags Operation flags for the new stage */ StatefulOp(AbstractPipeline<?, E_IN, ?> upstream, StreamShape inputShape, int opFlags) { super(upstream, opFlags); assert upstream.getOutputShape() == inputShape; } @Override final boolean opIsStateful() { return true; } @Override abstract <P_IN> Node<E_OUT> opEvaluateParallel(PipelineHelper<E_OUT> helper, Spliterator<P_IN> spliterator, IntFunction<E_OUT[]> generator); } }