/* * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * This file is available under and governed by the GNU General Public * License version 2 only, as published by the Free Software Foundation. * However, the following notice accompanied the original version of this * file: * * Copyright (c) 2009-2012, Stephen Colebourne & Michael Nascimento Santos * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * * Neither the name of JSR-310 nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ package build.tools.tzdb; import java.util.Arrays; import java.util.Collections; import java.util.List; import java.util.Objects; /** * A transition between two offsets caused by a discontinuity in the local time-line. * * @since 1.8 */ final class ZoneOffsetTransition implements Comparable<ZoneOffsetTransition> { /** * The local transition date-time at the transition. */ private final LocalDateTime transition; /** * The offset before transition. */ private final ZoneOffset offsetBefore; /** * The offset after transition. */ private final ZoneOffset offsetAfter; /** * Creates an instance defining a transition between two offsets. * * @param transition the transition date-time with the offset before the transition, not null * @param offsetBefore the offset before the transition, not null * @param offsetAfter the offset at and after the transition, not null */ ZoneOffsetTransition(LocalDateTime transition, ZoneOffset offsetBefore, ZoneOffset offsetAfter) { Objects.requireNonNull(transition, "transition"); Objects.requireNonNull(offsetBefore, "offsetBefore"); Objects.requireNonNull(offsetAfter, "offsetAfter"); if (offsetBefore.equals(offsetAfter)) { throw new IllegalArgumentException("Offsets must not be equal"); } this.transition = transition; this.offsetBefore = offsetBefore; this.offsetAfter = offsetAfter; } /** * Creates an instance from epoch-second and offsets. * * @param epochSecond the transition epoch-second * @param offsetBefore the offset before the transition, not null * @param offsetAfter the offset at and after the transition, not null */ ZoneOffsetTransition(long epochSecond, ZoneOffset offsetBefore, ZoneOffset offsetAfter) { this.transition = LocalDateTime.ofEpochSecond(epochSecond, 0, offsetBefore); this.offsetBefore = offsetBefore; this.offsetAfter = offsetAfter; } /** * Gets the transition instant as an epoch second. * * @return the transition epoch second */ public long toEpochSecond() { return transition.toEpochSecond(offsetBefore); } /** * Gets the local transition date-time, as would be expressed with the 'before' offset. * <p> * This is the date-time where the discontinuity begins expressed with the 'before' offset. * At this instant, the 'after' offset is actually used, therefore the combination of this * date-time and the 'before' offset will never occur. * <p> * The combination of the 'before' date-time and offset represents the same instant * as the 'after' date-time and offset. * * @return the transition date-time expressed with the before offset, not null */ public LocalDateTime getDateTimeBefore() { return transition; } /** * Gets the local transition date-time, as would be expressed with the 'after' offset. * <p> * This is the first date-time after the discontinuity, when the new offset applies. * <p> * The combination of the 'before' date-time and offset represents the same instant * as the 'after' date-time and offset. * * @return the transition date-time expressed with the after offset, not null */ public LocalDateTime getDateTimeAfter() { return transition.plusSeconds(getDurationSeconds()); } /** * Gets the offset before the transition. * <p> * This is the offset in use before the instant of the transition. * * @return the offset before the transition, not null */ public ZoneOffset getOffsetBefore() { return offsetBefore; } /** * Gets the offset after the transition. * <p> * This is the offset in use on and after the instant of the transition. * * @return the offset after the transition, not null */ public ZoneOffset getOffsetAfter() { return offsetAfter; } /** * Gets the duration of the transition in seconds. * * @return the duration in seconds */ private int getDurationSeconds() { return getOffsetAfter().getTotalSeconds() - getOffsetBefore().getTotalSeconds(); } /** * Does this transition represent a gap in the local time-line. * <p> * Gaps occur where there are local date-times that simply do not not exist. * An example would be when the offset changes from {@code +01:00} to {@code +02:00}. * This might be described as 'the clocks will move forward one hour tonight at 1am'. * * @return true if this transition is a gap, false if it is an overlap */ public boolean isGap() { return getOffsetAfter().getTotalSeconds() > getOffsetBefore().getTotalSeconds(); } /** * Does this transition represent a gap in the local time-line. * <p> * Overlaps occur where there are local date-times that exist twice. * An example would be when the offset changes from {@code +02:00} to {@code +01:00}. * This might be described as 'the clocks will move back one hour tonight at 2am'. * * @return true if this transition is an overlap, false if it is a gap */ public boolean isOverlap() { return getOffsetAfter().getTotalSeconds() < getOffsetBefore().getTotalSeconds(); } /** * Checks if the specified offset is valid during this transition. * <p> * This checks to see if the given offset will be valid at some point in the transition. * A gap will always return false. * An overlap will return true if the offset is either the before or after offset. * * @param offset the offset to check, null returns false * @return true if the offset is valid during the transition */ public boolean isValidOffset(ZoneOffset offset) { return isGap() ? false : (getOffsetBefore().equals(offset) || getOffsetAfter().equals(offset)); } /** * Gets the valid offsets during this transition. * <p> * A gap will return an empty list, while an overlap will return both offsets. * * @return the list of valid offsets */ List<ZoneOffset> getValidOffsets() { if (isGap()) { return Collections.emptyList(); } return Arrays.asList(getOffsetBefore(), getOffsetAfter()); } /** * Compares this transition to another based on the transition instant. * <p> * This compares the instants of each transition. * The offsets are ignored, making this order inconsistent with equals. * * @param transition the transition to compare to, not null * @return the comparator value, negative if less, positive if greater */ @Override public int compareTo(ZoneOffsetTransition transition) { return Long.compare(this.toEpochSecond(), transition.toEpochSecond()); } /** * Checks if this object equals another. * <p> * The entire state of the object is compared. * * @param other the other object to compare to, null returns false * @return true if equal */ @Override public boolean equals(Object other) { if (other == this) { return true; } if (other instanceof ZoneOffsetTransition) { ZoneOffsetTransition d = (ZoneOffsetTransition) other; return transition.equals(d.transition) && offsetBefore.equals(d.offsetBefore) && offsetAfter.equals(d.offsetAfter); } return false; } /** * Returns a suitable hash code. * * @return the hash code */ @Override public int hashCode() { return transition.hashCode() ^ offsetBefore.hashCode() ^ Integer.rotateLeft(offsetAfter.hashCode(), 16); } }