/* * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * This file is available under and governed by the GNU General Public * License version 2 only, as published by the Free Software Foundation. * However, the following notice accompanied the original version of this * file: * * Written by Doug Lea with assistance from members of JCP JSR-166 * Expert Group and released to the public domain, as explained at * http://creativecommons.org/publicdomain/zero/1.0/ */ package java.util.concurrent.atomic; import java.io.Serializable; /** * One or more variables that together maintain an initially zero * {@code long} sum. When updates (method {@link #add}) are contended * across threads, the set of variables may grow dynamically to reduce * contention. Method {@link #sum} (or, equivalently, {@link * #longValue}) returns the current total combined across the * variables maintaining the sum. * * <p>This class is usually preferable to {@link AtomicLong} when * multiple threads update a common sum that is used for purposes such * as collecting statistics, not for fine-grained synchronization * control. Under low update contention, the two classes have similar * characteristics. But under high contention, expected throughput of * this class is significantly higher, at the expense of higher space * consumption. * * <p>LongAdders can be used with a {@link * java.util.concurrent.ConcurrentHashMap} to maintain a scalable * frequency map (a form of histogram or multiset). For example, to * add a count to a {@code ConcurrentHashMap<String,LongAdder> freqs}, * initializing if not already present, you can use {@code * freqs.computeIfAbsent(k -> new LongAdder()).increment();} * * <p>This class extends {@link Number}, but does <em>not</em> define * methods such as {@code equals}, {@code hashCode} and {@code * compareTo} because instances are expected to be mutated, and so are * not useful as collection keys. * * @since 1.8 * @author Doug Lea */ public class LongAdder extends Striped64 implements Serializable { private static final long serialVersionUID = 7249069246863182397L; /** * Creates a new adder with initial sum of zero. */ public LongAdder() { } /** * Adds the given value. * * @param x the value to add */ public void add(long x) { Cell[] as; long b, v; int m; Cell a; if ((as = cells) != null || !casBase(b = base, b + x)) { boolean uncontended = true; if (as == null || (m = as.length - 1) < 0 || (a = as[getProbe() & m]) == null || !(uncontended = a.cas(v = a.value, v + x))) longAccumulate(x, null, uncontended); } } /** * Equivalent to {@code add(1)}. */ public void increment() { add(1L); } /** * Equivalent to {@code add(-1)}. */ public void decrement() { add(-1L); } /** * Returns the current sum. The returned value is <em>NOT</em> an * atomic snapshot; invocation in the absence of concurrent * updates returns an accurate result, but concurrent updates that * occur while the sum is being calculated might not be * incorporated. * * @return the sum */ public long sum() { Cell[] as = cells; Cell a; long sum = base; if (as != null) { for (int i = 0; i < as.length; ++i) { if ((a = as[i]) != null) sum += a.value; } } return sum; } /** * Resets variables maintaining the sum to zero. This method may * be a useful alternative to creating a new adder, but is only * effective if there are no concurrent updates. Because this * method is intrinsically racy, it should only be used when it is * known that no threads are concurrently updating. */ public void reset() { Cell[] as = cells; Cell a; base = 0L; if (as != null) { for (int i = 0; i < as.length; ++i) { if ((a = as[i]) != null) a.value = 0L; } } } /** * Equivalent in effect to {@link #sum} followed by {@link * #reset}. This method may apply for example during quiescent * points between multithreaded computations. If there are * updates concurrent with this method, the returned value is * <em>not</em> guaranteed to be the final value occurring before * the reset. * * @return the sum */ public long sumThenReset() { Cell[] as = cells; Cell a; long sum = base; base = 0L; if (as != null) { for (int i = 0; i < as.length; ++i) { if ((a = as[i]) != null) { sum += a.value; a.value = 0L; } } } return sum; } /** * Returns the String representation of the {@link #sum}. * @return the String representation of the {@link #sum} */ public String toString() { return Long.toString(sum()); } /** * Equivalent to {@link #sum}. * * @return the sum */ public long longValue() { return sum(); } /** * Returns the {@link #sum} as an {@code int} after a narrowing * primitive conversion. */ public int intValue() { return (int)sum(); } /** * Returns the {@link #sum} as a {@code float} * after a widening primitive conversion. */ public float floatValue() { return (float)sum(); } /** * Returns the {@link #sum} as a {@code double} after a widening * primitive conversion. */ public double doubleValue() { return (double)sum(); } private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { s.defaultWriteObject(); s.writeLong(sum()); } private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); cellsBusy = 0; cells = null; base = s.readLong(); } }