/* * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.util.stream; import java.nio.charset.Charset; import java.nio.file.Files; import java.nio.file.Path; import java.util.Collection; import java.util.Iterator; import java.util.Spliterator; import java.util.concurrent.ConcurrentHashMap; import java.util.function.IntConsumer; import java.util.function.Predicate; /** * A sequence of elements supporting sequential and parallel aggregate * operations. The following example illustrates an aggregate operation using * {@link Stream} and {@link IntStream}: * * <pre>{@code * int sum = widgets.stream() * .filter(w -> w.getColor() == RED) * .mapToInt(w -> w.getWeight()) * .sum(); * }</pre> * * In this example, {@code widgets} is a {@code Collection<Widget>}. We create * a stream of {@code Widget} objects via {@link Collection#stream Collection.stream()}, * filter it to produce a stream containing only the red widgets, and then * transform it into a stream of {@code int} values representing the weight of * each red widget. Then this stream is summed to produce a total weight. * * <p>To perform a computation, stream * <a href="package-summary.html#StreamOps">operations</a> are composed into a * <em>stream pipeline</em>. A stream pipeline consists of a source (which * might be an array, a collection, a generator function, an IO channel, * etc), zero or more <em>intermediate operations</em> (which transform a * stream into another stream, such as {@link Stream#filter(Predicate)}), and a * <em>terminal operation</em> (which produces a result or side-effect, such * as {@link IntStream#sum()} or {@link IntStream#forEach(IntConsumer)}). * Streams are lazy; computation on the source data is only performed when the * terminal operation is initiated, and source elements are consumed only * as needed. * * <p>Collections and streams, while bearing some superficial similarities, * have different goals. Collections are primarily concerned with the efficient * management of, and access to, their elements. By contrast, streams do not * provide a means to directly access or manipulate their elements, and are * instead concerned with declaratively describing their source and the * computational operations which will be performed in aggregate on that source. * However, if the provided stream operations do not offer the desired * functionality, the {@link #iterator()} and {@link #spliterator()} operations * can be used to perform a controlled traversal. * * <p>A stream pipeline, like the "widgets" example above, can be viewed as * a <em>query</em> on the stream source. Unless the source was explicitly * designed for concurrent modification (such as a {@link ConcurrentHashMap}), * unpredictable or erroneous behavior may result from modifying the stream * source while it is being queried. * * <p>Most stream operations accept parameters that describe user-specified * behavior, such as the lambda expression {@code w -> w.getWeight()} passed to * {@code mapToInt} in the example above. Such parameters are always instances * of a <a href="../function/package-summary.html">functional interface</a> such * as {@link java.util.function.Function}, and are often lambda expressions or * method references. These parameters can never be null, should not modify the * stream source, and should be * <a href="package-summary.html#NonInterference">effectively stateless</a> * (their result should not depend on any state that might change during * execution of the stream pipeline.) * * <p>A stream should be operated on (invoking an intermediate or terminal stream * operation) only once. This rules out, for example, "forked" streams, where * the same source feeds two or more pipelines, or multiple traversals of the * same stream. A stream implementation may throw {@link IllegalStateException} * if it detects that the stream is being reused. However, since some stream * operations may return their receiver rather than a new stream object, it may * not be possible to detect reuse in all cases. * * <p>Streams have a {@link #close()} method and implement {@link AutoCloseable}, * but nearly all stream instances do not actually need to be closed after use. * Generally, only streams whose source is an IO channel (such as those returned * by {@link Files#lines(Path, Charset)}) will require closing. Most streams * are backed by collections, arrays, or generating functions, which require no * special resource management. (If a stream does require closing, it can be * declared as a resource in a {@code try}-with-resources statement.) * * <p>Stream pipelines may execute either sequentially or in * <a href="package-summary.html#Parallelism">parallel</a>. This * execution mode is a property of the stream. Streams are created * with an initial choice of sequential or parallel execution. (For example, * {@link Collection#stream() Collection.stream()} creates a sequential stream, * and {@link Collection#parallelStream() Collection.parallelStream()} creates * a parallel one.) This choice of execution mode may be modified by the * {@link #sequential()} or {@link #parallel()} methods, and may be queried with * the {@link #isParallel()} method. * * @param <T> the type of the stream elements * @param <S> the type of of the stream implementing {@code BaseStream} * @since 1.8 * @see <a href="package-summary.html">java.util.stream</a> */ public interface BaseStream<T, S extends BaseStream<T, S>> extends AutoCloseable { /** * Returns an iterator for the elements of this stream. * * <p>This is a <a href="package-summary.html#StreamOps">terminal * operation</a>. * * @return the element iterator for this stream */ Iterator<T> iterator(); /** * Returns a spliterator for the elements of this stream. * * <p>This is a <a href="package-summary.html#StreamOps">terminal * operation</a>. * * @return the element spliterator for this stream */ Spliterator<T> spliterator(); /** * Returns whether this stream, if a terminal operation were to be executed, * would execute in parallel. Calling this method after invoking an * terminal stream operation method may yield unpredictable results. * * @return {@code true} if this stream would execute in parallel if executed */ boolean isParallel(); /** * Returns an equivalent stream that is sequential. May return * itself, either because the stream was already sequential, or because * the underlying stream state was modified to be sequential. * * <p>This is an <a href="package-summary.html#StreamOps">intermediate * operation</a>. * * @return a sequential stream */ S sequential(); /** * Returns an equivalent stream that is parallel. May return * itself, either because the stream was already parallel, or because * the underlying stream state was modified to be parallel. * * <p>This is an <a href="package-summary.html#StreamOps">intermediate * operation</a>. * * @return a parallel stream */ S parallel(); /** * Returns an equivalent stream that is * <a href="package-summary.html#Ordering">unordered</a>. May return * itself, either because the stream was already unordered, or because * the underlying stream state was modified to be unordered. * * <p>This is an <a href="package-summary.html#StreamOps">intermediate * operation</a>. * * @return an unordered stream */ S unordered(); /** * Returns an equivalent stream with an additional close handler. Close * handlers are run when the {@link #close()} method * is called on the stream, and are executed in the order they were * added. All close handlers are run, even if earlier close handlers throw * exceptions. If any close handler throws an exception, the first * exception thrown will be relayed to the caller of {@code close()}, with * any remaining exceptions added to that exception as suppressed exceptions * (unless one of the remaining exceptions is the same exception as the * first exception, since an exception cannot suppress itself.) May * return itself. * * <p>This is an <a href="package-summary.html#StreamOps">intermediate * operation</a>. * * @param closeHandler A task to execute when the stream is closed * @return a stream with a handler that is run if the stream is closed */ S onClose(Runnable closeHandler); /** * Closes this stream, causing all close handlers for this stream pipeline * to be called. * * @see AutoCloseable#close() */ @Override void close(); }