/* * The JTS Topology Suite is a collection of Java classes that * implement the fundamental operations required to validate a given * geo-spatial data set to a known topological specification. * * Copyright (C) 2001 Vivid Solutions * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * For more information, contact: * * Vivid Solutions * Suite #1A * 2328 Government Street * Victoria BC V8T 5G5 * Canada * * (250)385-6040 * www.vividsolutions.com */ package com.revolsys.geometry.index.strtree; import java.io.Serializable; import java.util.ArrayList; import java.util.Collection; import java.util.Iterator; import java.util.List; import java.util.function.Consumer; import com.revolsys.util.Emptyable; /** * A node of an {@link AbstractSTRtree}. A node is one of: * <ul> * <li>empty * <li>an <i>interior node</i> containing child {@link AbstractNode}s * <li>a <i>leaf node</i> containing data items ({@link ItemBoundable}s). * </ul> * A node stores the bounds of its children, and its level within the index tree. * * @version 1.7 */ public abstract class AbstractNode<B, I> implements Emptyable, Boundable<B, I>, Serializable { private static final long serialVersionUID = 6493722185909573708L; private B bounds = null; private final List<Boundable<B, I>> children = new ArrayList<>(); private int level; /** * Default constructor required for serialization. */ public AbstractNode() { } /** * Constructs an AbstractNode at the given level in the tree * @param level 0 if this node is a leaf, 1 if a parent of a leaf, and so on; the * root node will have the highest level */ public AbstractNode(final int level) { this.level = level; } /** * Adds either an AbstractNode, or if this is a leaf node, a data object * (wrapped in an ItemBoundable) */ public void addChild(final Boundable<B, I> child) { this.children.add(child); } /** * @param level -1 to get items */ @Override public void boundablesAtLevel(final int level, final Collection<Boundable<B, I>> boundables) { if (getLevel() == level) { boundables.add(this); } else { for (final Boundable<B, I> boundable : this) { boundable.boundablesAtLevel(level, boundables); } } } /** * Returns a representation of space that encloses this Boundable, * preferably not much bigger than this Boundable's boundary yet fast to * test for intersection with the bounds of other Boundables. The class of * object returned depends on the subclass of AbstractSTRtree. * * @return an BoundingBox (for STRtrees), an Interval (for SIRtrees), or other * object (for other subclasses of AbstractSTRtree) * @see AbstractSTRtree.IntersectsOp */ protected abstract B computeBounds(); /** * Gets the bounds of this node * * @return the object representing bounds in this index */ @Override public B getBounds() { if (this.bounds == null) { this.bounds = computeBounds(); } return this.bounds; } /** * Gets the count of the {@link Boundable}s at this node. * * @return the count of boundables at this node */ @Override public int getChildCount() { return this.children.size(); } /** * Returns either child {@link AbstractNode}s, or if this is a leaf node, real data (wrapped * in {@link ItemBoundable}s). */ @Override public List<Boundable<B, I>> getChildren() { return this.children; } @Override public int getDepth() { int maxChildDepth = 0; for (final Boundable<B, I> childBoundable : this) { final int childDepth = childBoundable.getDepth(); if (childDepth > maxChildDepth) { maxChildDepth = childDepth; } } return maxChildDepth + 1; } @Override public int getItemCount() { int itemCount = 0; for (final Boundable<B, I> childBoundable : this) { itemCount += childBoundable.getItemCount(); } return itemCount; } /** * Returns 0 if this node is a leaf, 1 if a parent of a leaf, and so on; the * root node will have the highest level */ public int getLevel() { return this.level; } /** * Tests whether there are any {@link Boundable}s at this node. * * @return true if there are boundables at this node */ @Override public boolean isEmpty() { return this.children.isEmpty(); } @Override public boolean isNode() { return true; } @Override public Iterator<Boundable<B, I>> iterator() { return this.children.iterator(); } @Override public void query(final AbstractSTRtree<B, ?, ?> tree, final B searchBounds, final Consumer<? super I> action) { if (tree.intersects(getBounds(), searchBounds)) { for (final Boundable<B, I> child : this) { child.query(tree, searchBounds, action); } } } @Override public boolean remove(final AbstractSTRtree<B, ?, ?> tree, final B searchBounds, final I item) { // first try removing item from this node if (removeItem(item)) { return true; } else { for (final Iterator<Boundable<B, I>> iterator = this.children.iterator(); iterator .hasNext();) { final Boundable<B, I> child = iterator.next(); if (child.isNode()) { if (tree.intersects(child.getBounds(), searchBounds)) { if (child.remove(tree, searchBounds, item)) { if (child.isEmpty()) { iterator.remove(); } return true; } } } } return false; } } private boolean removeItem(final I item) { for (final Iterator<Boundable<B, I>> iterator = this.children.iterator(); iterator.hasNext();) { final Boundable<B, I> child = iterator.next(); if (child.getItem() == item) { iterator.remove(); return true; } } return false; } }