package com.revolsys.geometry.index; /** * DoubleBits manipulates Double numbers * by using bit manipulation and bit-field extraction. * For some operations (such as determining the exponent) * this is more accurate than using mathematical operations * (which suffer from round-off error). * <p> * The algorithms and constants in this class * apply only to IEEE-754 double-precision floating point format. * * @version 1.7 */ public class DoubleBits { public static final int EXPONENT_BIAS = 1023; public static int exponent(final double value) { final long valueBits = Double.doubleToLongBits(value); final int signExp = (int)(valueBits >> 52); final int exp = signExp & 0x07ff; return exp - EXPONENT_BIAS; } public static double maximumCommonMantissa(final double d1, final double d2) { if (d1 == 0.0 || d2 == 0.0) { return 0.0; } final DoubleBits db1 = new DoubleBits(d1); final DoubleBits db2 = new DoubleBits(d2); if (db1.getExponent() != db2.getExponent()) { return 0.0; } final int maxCommon = db1.numCommonMantissaBits(db2); db1.zeroLowerBits(64 - (12 + maxCommon)); return db1.getDouble(); } public static double powerOf2(final int exp) { if (exp > 1023 || exp < -1022) { throw new IllegalArgumentException("Exponent out of bounds"); } final long expBias = exp + EXPONENT_BIAS; final long bits = expBias << 52; return Double.longBitsToDouble(bits); } public static String toBinaryString(final double d) { final DoubleBits db = new DoubleBits(d); return db.toString(); } public static double truncateToPowerOfTwo(final double d) { final DoubleBits db = new DoubleBits(d); db.zeroLowerBits(52); return db.getDouble(); } private final double x; private long xBits; public DoubleBits(final double x) { this.x = x; this.xBits = Double.doubleToLongBits(x); } /** * Determines the exponent for the number */ public int biasedExponent() { final int signExp = (int)(this.xBits >> 52); final int exp = signExp & 0x07ff; return exp; } public int getBit(final int i) { final long mask = 1L << i; return (this.xBits & mask) != 0 ? 1 : 0; } public double getDouble() { return Double.longBitsToDouble(this.xBits); } /** * Determines the exponent for the number */ public int getExponent() { return biasedExponent() - EXPONENT_BIAS; } /** * This computes the number of common most-significant bits in the mantissa. * It does not count the hidden bit, which is always 1. * It does not determine whether the numbers have the same exponent - if they do * not, the value computed by this function is meaningless. * @param db * @return the number of common most-significant mantissa bits */ public int numCommonMantissaBits(final DoubleBits db) { for (int i = 0; i < 52; i++) { final int bitIndex = i + 12; if (getBit(i) != db.getBit(i)) { return i; } } return 52; } /** * A representation of the Double bits formatted for easy readability */ @Override public String toString() { final String numStr = Long.toBinaryString(this.xBits); // 64 zeroes! final String zero64 = "0000000000000000000000000000000000000000000000000000000000000000"; final String padStr = zero64 + numStr; final String bitStr = padStr.substring(padStr.length() - 64); final String str = bitStr.substring(0, 1) + " " + bitStr.substring(1, 12) + "(" + getExponent() + ") " + bitStr.substring(12) + " [ " + this.x + " ]"; return str; } public void zeroLowerBits(final int nBits) { final long invMask = (1L << nBits) - 1L; final long mask = ~invMask; this.xBits &= mask; } }