/* * Copyright 2000-2014 JetBrains s.r.o. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.intellij.util.containers; import com.intellij.util.concurrency.AtomicFieldUpdater; import org.jetbrains.annotations.NotNull; import sun.misc.Unsafe; import java.util.*; import java.util.concurrent.locks.LockSupport; /** * Adapted from java.util.concurrent.ConcurrentHashMap to int keys * @author Doug Lea * @param <V> the type of mapped values * @deprecated Use {@link ContainerUtil#createConcurrentIntObjectMap()} instead */ // added hashing strategy argument // added cacheOrGet convenience method // Null values are NOT allowed class ConcurrentIntObjectHashMap<V> implements ConcurrentIntObjectMap<V> { /** * The largest possible table capacity. This value must be * exactly 1<<30 to stay within Java array allocation and indexing * bounds for power of two table sizes, and is further required * because the top two bits of 32bit hash fields are used for * control purposes. */ private static final int MAXIMUM_CAPACITY = 1 << 30; /** * The default initial table capacity. Must be a power of 2 * (i.e., at least 1) and at most MAXIMUM_CAPACITY. */ private static final int DEFAULT_CAPACITY = 16; /** * The largest possible (non-power of two) array size. * Needed by toArray and related methods. */ static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; /** * The bin count threshold for using a tree rather than list for a * bin. Bins are converted to trees when adding an element to a * bin with at least this many nodes. The value must be greater * than 2, and should be at least 8 to mesh with assumptions in * tree removal about conversion back to plain bins upon * shrinkage. */ static final int TREEIFY_THRESHOLD = 8; /** * The bin count threshold for untreeifying a (split) bin during a * resize operation. Should be less than TREEIFY_THRESHOLD, and at * most 6 to mesh with shrinkage detection under removal. */ static final int UNTREEIFY_THRESHOLD = 6; /** * The smallest table capacity for which bins may be treeified. * (Otherwise the table is resized if too many nodes in a bin.) * The value should be at least 4 * TREEIFY_THRESHOLD to avoid * conflicts between resizing and treeification thresholds. */ static final int MIN_TREEIFY_CAPACITY = 64; /** * Minimum number of rebinnings per transfer step. Ranges are * subdivided to allow multiple resizer threads. This value * serves as a lower bound to avoid resizers encountering * excessive memory contention. The value should be at least * DEFAULT_CAPACITY. */ private static final int MIN_TRANSFER_STRIDE = 16; /** * The number of bits used for generation stamp in sizeCtl. * Must be at least 6 for 32bit arrays. */ private static final int RESIZE_STAMP_BITS = 16; /** * The maximum number of threads that can help resize. * Must fit in 32 - RESIZE_STAMP_BITS bits. */ private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1; /** * The bit shift for recording size stamp in sizeCtl. */ private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS; /* * Encodings for Node hash fields. See above for explanation. */ static final int MOVED = -1; // hash for forwarding nodes static final int TREEBIN = -2; // hash for roots of trees static final int RESERVED = -3; // hash for transient reservations static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash /** * Number of CPUS, to place bounds on some sizings */ static final int NCPU = Runtime.getRuntime().availableProcessors(); /* ---------------- Nodes -------------- */ /** * Key-value entry. This class is never exported out as a * user-mutable Map.Entry (i.e., one supporting setValue; see * MapEntry below), but can be used for read-only traversals used * in bulk tasks. Subclasses of Node with a negative hash field * are special, and contain null keys and values (but are never * exported). Otherwise, keys and vals are never null. */ static class Node<V> implements IntEntry<V> { final int hash; final int key; volatile V val; volatile Node<V> next; Node(int hash, int key, V val, Node<V> next) { this.hash = hash; this.key = key; this.val = val; this.next = next; } @Override public final int getKey() { return key; } @NotNull @Override public final V getValue() { return val; } @Override public final int hashCode() { return (int)(key ^ val.hashCode()); } @Override public final String toString() { return key + "=" + val; } @Override public final boolean equals(Object o) { Object v; Object u; IntEntry<?> e; return ((o instanceof IntEntry) && (e = (IntEntry<?>)o).getKey() == key && (v = e.getValue()) != null && (v == (u = val) || v.equals(u))); } /** * Virtualized support for map.get(); overridden in subclasses. */ Node<V> find(int h, int k) { Node<V> e = this; do { if ((e.key == k)) { return e; } } while ((e = e.next) != null); return null; } } /* ---------------- Static utilities -------------- */ /** * Spreads (XORs) higher bits of hash to lower and also forces top * bit to 0. Because the table uses power-of-two masking, sets of * hashes that vary only in bits above the current mask will * always collide. (Among known examples are sets of Float keys * holding consecutive whole numbers in small tables.) So we * apply a transform that spreads the impact of higher bits * downward. There is a tradeoff between speed, utility, and * quality of bit-spreading. Because many common sets of hashes * are already reasonably distributed (so don't benefit from * spreading), and because we use trees to handle large sets of * collisions in bins, we just XOR some shifted bits in the * cheapest possible way to reduce systematic lossage, as well as * to incorporate impact of the highest bits that would otherwise * never be used in index calculations because of table bounds. */ static int spread(int h) { return (int)((h ^ (h >>> 16)) & HASH_BITS); } /** * Returns a power of two table size for the given desired capacity. * See Hackers Delight, sec 3.2 */ private static int tableSizeFor(int c) { int n = c - 1; n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; } /* ---------------- Table element access -------------- */ /* * Volatile access methods are used for table elements as well as * elements of in-progress next table while resizing. All uses of * the tab arguments must be null checked by callers. All callers * also paranoically precheck that tab's length is not zero (or an * equivalent check), thus ensuring that any index argument taking * the form of a hash value anded with (length - 1) is a valid * index. Note that, to be correct wrt arbitrary concurrency * errors by users, these checks must operate on local variables, * which accounts for some odd-looking inline assignments below. * Note that calls to setTabAt always occur within locked regions, * and so in principle require only release ordering, not * full volatile semantics, but are currently coded as volatile * writes to be conservative. */ @SuppressWarnings("unchecked") static <V> Node<V> tabAt(Node<V>[] tab, int i) { return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE); } static <V> boolean casTabAt(Node<V>[] tab, int i, Node<V> c, Node<V> v) { return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v); } static <V> void setTabAt(Node<V>[] tab, int i, Node<V> v) { U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v); } /* ---------------- Fields -------------- */ /** * The array of bins. Lazily initialized upon first insertion. * Size is always a power of two. Accessed directly by iterators. */ transient volatile Node<V>[] table; /** * The next table to use; non-null only while resizing. */ private transient volatile Node<V>[] nextTable; /** * Base counter value, used mainly when there is no contention, * but also as a fallback during table initialization * races. Updated via CAS. */ @SuppressWarnings("UnusedDeclaration") private transient volatile long baseCount; /** * Table initialization and resizing control. When negative, the * table is being initialized or resized: -1 for initialization, * else -(1 + the number of active resizing threads). Otherwise, * when table is null, holds the initial table size to use upon * creation, or 0 for default. After initialization, holds the * next element count value upon which to resize the table. */ private transient volatile int sizeCtl; /** * The next table index (plus one) to split while resizing. */ private transient volatile int transferIndex; /** * Spinlock (locked via CAS) used when resizing and/or creating CounterCells. */ private transient volatile int cellsBusy; /** * Table of counter cells. When non-null, size is a power of 2. */ private transient volatile ConcurrentHashMap.CounterCell[] counterCells; // views private transient ValuesView<V> values; private transient EntrySetView<V> entrySet; /* ---------------- Public operations -------------- */ /** * Creates a new, empty map with the default initial table size (16). */ public ConcurrentIntObjectHashMap() { } /** * Creates a new, empty map with an initial table size * accommodating the specified number of elements without the need * to dynamically resize. * * @param initialCapacity The implementation performs internal * sizing to accommodate this many elements. * @throws IllegalArgumentException if the initial capacity of * elements is negative */ public ConcurrentIntObjectHashMap(int initialCapacity) { if (initialCapacity < 0) { throw new IllegalArgumentException(); } int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY : tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1)); sizeCtl = cap; } /** * Creates a new, empty map with an initial table size based on * the given number of elements ({@code initialCapacity}) and * initial table density ({@code loadFactor}). * * @param initialCapacity the initial capacity. The implementation * performs internal sizing to accommodate this many elements, * given the specified load factor. * @param loadFactor the load factor (table density) for * establishing the initial table size * @throws IllegalArgumentException if the initial capacity of * elements is negative or the load factor is nonpositive * @since 1.6 */ public ConcurrentIntObjectHashMap(int initialCapacity, float loadFactor) { this(initialCapacity, loadFactor, 1); } /** * Creates a new, empty map with an initial table size based on * the given number of elements ({@code initialCapacity}), table * density ({@code loadFactor}), and number of concurrently * updating threads ({@code concurrencyLevel}). * * @param initialCapacity the initial capacity. The implementation * performs internal sizing to accommodate this many elements, * given the specified load factor. * @param loadFactor the load factor (table density) for * establishing the initial table size * @param concurrencyLevel the estimated number of concurrently * updating threads. The implementation may use this value as * a sizing hint. * @throws IllegalArgumentException if the initial capacity is * negative or the load factor or concurrencyLevel are * nonpositive */ public ConcurrentIntObjectHashMap(int initialCapacity, float loadFactor, int concurrencyLevel) { if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0) { throw new IllegalArgumentException(); } if (initialCapacity < concurrencyLevel) // Use at least as many bins { initialCapacity = concurrencyLevel; // as estimated threads } long size = (long)(1.0 + (long)initialCapacity / loadFactor); int cap = (size >= (long)MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : tableSizeFor((int)size); sizeCtl = cap; } // Original (since JDK1.2) Map methods /** * {@inheritDoc} */ @Override public int size() { long n = sumCount(); return ((n < 0L) ? 0 : (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE : (int)n); } /** * {@inheritDoc} */ @Override public boolean isEmpty() { return sumCount() <= 0L; // ignore transient negative values } /** * Returns the value to which the specified key is mapped, * or {@code null} if this map contains no mapping for the key. * <p/> * <p>More formally, if this map contains a mapping from a key * {@code k} to a value {@code v} such that {@code key.equals(k)}, * then this method returns {@code v}; otherwise it returns * {@code null}. (There can be at most one such mapping.) */ @Override public V get(int key) { Node<V>[] tab; Node<V> e; Node<V> p; int n, eh; int h = spread(key); if ((tab = table) != null && (n = tab.length) > 0 && (e = tabAt(tab, (n - 1) & h)) != null) { if ((eh = e.hash) == h) { if (e.key == key) { return e.val; } } else if (eh < 0) { return (p = e.find(h, key)) != null ? p.val : null; } while ((e = e.next) != null) { if (e.hash == h && (e.key == key)) { return e.val; } } } return null; } /** * Tests if the specified object is a key in this table. * * @param key possible key * @return {@code true} if and only if the specified object * is a key in this table, as determined by the * {@code equals} method; {@code false} otherwise */ @Override public boolean containsKey(int key) { return get(key) != null; } /** * Returns {@code true} if this map maps one or more keys to the * specified value. Note: This method may require a full traversal * of the map, and is much slower than method {@code containsKey}. * * @param value value whose presence in this map is to be tested * @return {@code true} if this map maps one or more keys to the * specified value */ @Override public boolean containsValue(@NotNull Object value) { Node<V>[] t; if ((t = table) != null) { Traverser<V> it = new Traverser<V>(t, t.length, 0, t.length); for (Node<V> p; (p = it.advance()) != null; ) { V v; if ((v = p.val) == value || (v != null && value.equals(v))) { return true; } } } return false; } /** * Maps the specified key to the specified value in this table. * Neither the key nor the value can be null. * <p/> * <p>The value can be retrieved by calling the {@code get} method * with a key that is equal to the original key. * * @param key key with which the specified value is to be associated * @param value value to be associated with the specified key * @return the previous value associated with {@code key}, or * {@code null} if there was no mapping for {@code key} */ @Override public V put(int key, @NotNull V value) { return putVal(key, value, false); } /** * Implementation for put and putIfAbsent */ final V putVal(int key, @NotNull V value, boolean onlyIfAbsent) { int hash = spread(key); int binCount = 0; for (Node<V>[] tab = table; ; ) { Node<V> f; int n, i, fh; if (tab == null || (n = tab.length) == 0) { tab = initTable(); } else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) { if (casTabAt(tab, i, null, new Node<V>(hash, key, value, null))) { break; // no lock when adding to empty bin } } else if ((fh = f.hash) == MOVED) { tab = helpTransfer(tab, f); } else { V oldVal = null; synchronized (f) { if (tabAt(tab, i) == f) { if (fh >= 0) { binCount = 1; for (Node<V> e = f; ; ++binCount) { if ((e.key == key)) { oldVal = e.val; if (!onlyIfAbsent) { e.val = value; } break; } Node<V> pred = e; if ((e = e.next) == null) { pred.next = new Node<V>(hash, key, value, null); break; } } } else if (f instanceof TreeBin) { Node<V> p; binCount = 2; if ((p = ((TreeBin<V>)f).putTreeVal(hash, key, value)) != null) { oldVal = p.val; if (!onlyIfAbsent) { p.val = value; } } } } } if (binCount != 0) { if (binCount >= TREEIFY_THRESHOLD) { treeifyBin(tab, i); } if (oldVal != null) { return oldVal; } break; } } } addCount(1L, binCount); return null; } /** * Removes the key (and its corresponding value) from this map. * This method does nothing if the key is not in the map. * * @param key the key that needs to be removed * @return the previous value associated with {@code key}, or * {@code null} if there was no mapping for {@code key} */ @Override public V remove(int key) { return replaceNode(key, null, null); } /** * Implementation for the four public remove/replace methods: * Replaces node value with v, conditional upon match of cv if * non-null. If resulting value is null, delete. */ final V replaceNode(int key, V value, Object cv) { int hash = spread(key); for (Node<V>[] tab = table; ; ) { Node<V> f; int n, i, fh; if (tab == null || (n = tab.length) == 0 || (f = tabAt(tab, i = (n - 1) & hash)) == null) { break; } else if ((fh = f.hash) == MOVED) { tab = helpTransfer(tab, f); } else { V oldVal = null; boolean validated = false; synchronized (f) { if (tabAt(tab, i) == f) { if (fh >= 0) { validated = true; for (Node<V> e = f, pred = null; ; ) { if ((e.key == key)) { V ev = e.val; if (cv == null || cv == ev || (ev != null && cv.equals(ev))) { oldVal = ev; if (value != null) { e.val = value; } else if (pred != null) { pred.next = e.next; } else { setTabAt(tab, i, e.next); } } break; } pred = e; if ((e = e.next) == null) { break; } } } else if (f instanceof TreeBin) { validated = true; TreeBin<V> t = (TreeBin<V>)f; TreeNode<V> r, p; if ((r = t.root) != null && (p = r.findTreeNode(hash, key)) != null) { V pv = p.val; if (cv == null || cv == pv || (pv != null && cv.equals(pv))) { oldVal = pv; if (value != null) { p.val = value; } else if (t.removeTreeNode(p)) { setTabAt(tab, i, untreeify(t.first)); } } } } } } if (validated) { if (oldVal != null) { if (value == null) { addCount(-1L, -1); } return oldVal; } break; } } } return null; } /** * Removes all of the mappings from this map. */ @Override public void clear() { long delta = 0L; // negative number of deletions int i = 0; Node<V>[] tab = table; while (tab != null && i < tab.length) { int fh; Node<V> f = tabAt(tab, i); if (f == null) { ++i; } else if ((fh = f.hash) == MOVED) { tab = helpTransfer(tab, f); i = 0; // restart } else { synchronized (f) { if (tabAt(tab, i) == f) { Node<V> p = (fh >= 0 ? f : (f instanceof TreeBin) ? ((TreeBin<V>)f).first : null); while (p != null) { --delta; p = p.next; } setTabAt(tab, i++, null); } } } } if (delta != 0L) { addCount(delta, -1); } } /** * Returns a {@link Collection} view of the values contained in this map. * The collection is backed by the map, so changes to the map are * reflected in the collection, and vice-versa. The collection * supports element removal, which removes the corresponding * mapping from this map, via the {@code Iterator.remove}, * {@code Collection.remove}, {@code removeAll}, * {@code retainAll}, and {@code clear} operations. It does not * support the {@code add} or {@code addAll} operations. * <p/> * <p>The view's iterators and spliterators are * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>. * <p/> * * @return the collection view */ @NotNull @Override public Collection<V> values() { ValuesView<V> vs; return (vs = values) != null ? vs : (values = new ValuesView<V>(this)); } /** * Returns a {@link Set} view of the mappings contained in this map. * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. The set supports element * removal, which removes the corresponding mapping from the map, * via the {@code Iterator.remove}, {@code Set.remove}, * {@code removeAll}, {@code retainAll}, and {@code clear} * operations. * <p/> * <p>The view's iterators and spliterators are * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>. * <p/> * * @return the set view */ public Set<IntEntry<V>> entrySet() { EntrySetView<V> es; return (es = entrySet) != null ? es : (entrySet = new EntrySetView<V>(this)); } /** * Returns the hash code value for this {@link Map}, i.e., * the sum of, for each key-value pair in the map, * {@code key.hashCode() ^ value.hashCode()}. * * @return the hash code value for this map */ @Override public int hashCode() { int h = 0; Node<V>[] t; if ((t = table) != null) { Traverser<V> it = new Traverser<V>(t, t.length, 0, t.length); for (Node<V> p; (p = it.advance()) != null; ) { h += p.key ^ p.val.hashCode(); } } return h; } /** * Returns a string representation of this map. The string * representation consists of a list of key-value mappings (in no * particular order) enclosed in braces ("{@code {}}"). Adjacent * mappings are separated by the characters {@code ", "} (comma * and space). Each key-value mapping is rendered as the key * followed by an equals sign ("{@code =}") followed by the * associated value. * * @return a string representation of this map */ @Override public String toString() { Node<V>[] t; int f = (t = table) == null ? 0 : t.length; Traverser<V> it = new Traverser<V>(t, f, 0, f); StringBuilder sb = new StringBuilder(); sb.append('{'); Node<V> p; if ((p = it.advance()) != null) { for (; ; ) { int k = p.key; V v = p.val; sb.append(k); sb.append('='); sb.append(v == this ? "(this Map)" : v); if ((p = it.advance()) == null) { break; } sb.append(',').append(' '); } } return sb.append('}').toString(); } /** * Compares the specified object with this map for equality. * Returns {@code true} if the given object is a map with the same * mappings as this map. This operation may return misleading * results if either map is concurrently modified during execution * of this method. * * @param o object to be compared for equality with this map * @return {@code true} if the specified object is equal to this map */ @Override public boolean equals(Object o) { if (o != this) { if (!(o instanceof ConcurrentIntObjectMap)) { return false; } ConcurrentIntObjectMap<?> m = (ConcurrentIntObjectMap)o; Node<V>[] t; int f = (t = table) == null ? 0 : t.length; Traverser<V> it = new Traverser<V>(t, f, 0, f); for (Node<V> p; (p = it.advance()) != null; ) { V val = p.val; Object v = m.get(p.key); if (v == null || (v != val && !v.equals(val))) { return false; } } for (IntEntry e : m.entries()) { int mk = e.getKey(); Object mv; Object v; if ((mv = e.getValue()) == null || (v = get(mk)) == null || (mv != v && !mv.equals(v))) { return false; } } } return true; } // ConcurrentMap methods /** * {@inheritDoc} * * @return the previous value associated with the specified key, * or {@code null} if there was no mapping for the key */ @Override public V putIfAbsent(int key, @NotNull V value) { return putVal(key, value, true); } /** * {@inheritDoc} */ @Override public boolean remove(int key, @NotNull Object value) { return replaceNode(key, null, value) != null; } /** * {@inheritDoc} */ @Override public boolean replace(int key, @NotNull V oldValue, @NotNull V newValue) { return replaceNode(key, newValue, oldValue) != null; } /** * {@inheritDoc} * * @return the previous value associated with the specified key, * or {@code null} if there was no mapping for the key */ public V replace(int key, @NotNull V value) { return replaceNode(key, value, null); } // Overrides of JDK8+ Map extension method defaults /** * Returns the value to which the specified key is mapped, or the * given default value if this map contains no mapping for the * key. * * @param key the key whose associated value is to be returned * @param defaultValue the value to return if this map contains * no mapping for the given key * @return the mapping for the key, if present; else the default value */ public V getOrDefault(int key, V defaultValue) { V v; return (v = get(key)) == null ? defaultValue : v; } // Hashtable legacy methods /** * Legacy method testing if some key maps into the specified value * in this table. This method is identical in functionality to * {@link #containsValue(Object)}, and exists solely to ensure * full compatibility with class {@link java.util.Hashtable}, * which supported this method prior to introduction of the * Java Collections framework. * * @param value a value to search for * @return {@code true} if and only if some key maps to the * {@code value} argument in this table as * determined by the {@code equals} method; * {@code false} otherwise */ public boolean contains(Object value) { return containsValue(value); } /** * Returns an enumeration of the keys in this table. * * @return an enumeration of the keys in this table */ @NotNull @Override public int[] keys() { Object[] entries = new EntrySetView<V>(this).toArray(); int[] result = new int[entries.length]; for (int i = 0; i < entries.length; i++) { IntEntry<V> entry = (IntEntry<V>)entries[i]; result[i] = entry.getKey(); } return result; } /** * Returns an enumeration of the values in this table. * * @return an enumeration of the values in this table * @see #values() */ @NotNull @Override public Enumeration<V> elements() { Node<V>[] t; int f = (t = table) == null ? 0 : t.length; return new ValueIterator<V>(t, f, 0, f, this); } // ConcurrentHashMap-only methods /** * Returns the number of mappings. This method should be used * instead of {@link #size} because a ConcurrentHashMap may * contain more mappings than can be represented as an int. The * value returned is an estimate; the actual count may differ if * there are concurrent insertions or removals. * * @return the number of mappings * @since 1.8 */ public long mappingCount() { long n = sumCount(); return (n < 0L) ? 0L : n; // ignore transient negative values } /* ---------------- Special Nodes -------------- */ /** * A node inserted at head of bins during transfer operations. */ static final class ForwardingNode<V> extends Node<V> { final Node<V>[] nextTable; ForwardingNode(Node<V>[] tab) { super(MOVED, 0, null, null); nextTable = tab; } @Override Node<V> find(int h, int k) { // loop to avoid arbitrarily deep recursion on forwarding nodes outer: for (Node<V>[] tab = nextTable; ; ) { Node<V> e; int n; if (tab == null || (n = tab.length) == 0 || (e = tabAt(tab, (n - 1) & h)) == null) { return null; } for (; ; ) { if ((e.key == k)) { return e; } if (e.hash < 0) { if (e instanceof ForwardingNode) { tab = ((ForwardingNode<V>)e).nextTable; continue outer; } else { return e.find(h, k); } } if ((e = e.next) == null) { return null; } } } } } /* ---------------- Table Initialization and Resizing -------------- */ /** * Returns the stamp bits for resizing a table of size n. * Must be negative when shifted left by RESIZE_STAMP_SHIFT. */ static int resizeStamp(int n) { return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1)); } /** * Initializes table, using the size recorded in sizeCtl. */ private Node<V>[] initTable() { Node<V>[] tab; int sc; while ((tab = table) == null || tab.length == 0) { if ((sc = sizeCtl) < 0) { Thread.yield(); // lost initialization race; just spin } else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { try { if ((tab = table) == null || tab.length == 0) { int n = (sc > 0) ? sc : DEFAULT_CAPACITY; @SuppressWarnings("unchecked") Node<V>[] nt = (Node<V>[])new Node<?>[n]; table = tab = nt; sc = n - (n >>> 2); } } finally { sizeCtl = sc; } break; } } return tab; } /** * Adds to count, and if table is too small and not already * resizing, initiates transfer. If already resizing, helps * perform transfer if work is available. Rechecks occupancy * after a transfer to see if another resize is already needed * because resizings are lagging additions. * * @param x the count to add * @param check if <0, don't check resize, if <= 1 only check if uncontended */ private void addCount(long x, int check) { ConcurrentHashMap.CounterCell[] as; long b, s; if ((as = counterCells) != null || !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) { ConcurrentHashMap.CounterCell a; long v; int m; boolean uncontended = true; if (as == null || (m = as.length - 1) < 0 || (a = as[ThreadLocalRandom.getProbe() & m]) == null || !(uncontended = U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) { fullAddCount(x, uncontended); return; } if (check <= 1) { return; } s = sumCount(); } if (check >= 0) { Node<V>[] tab, nt; int n, sc; while (s >= (long)(sc = sizeCtl) && (tab = table) != null && (n = tab.length) < MAXIMUM_CAPACITY) { int rs = resizeStamp(n); if (sc < 0) { if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || sc == rs + MAX_RESIZERS || (nt = nextTable) == null || transferIndex <= 0) { break; } if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) { transfer(tab, nt); } } else if (U.compareAndSwapInt(this, SIZECTL, sc, (rs << RESIZE_STAMP_SHIFT) + 2)) { transfer(tab, null); } s = sumCount(); } } } /** * Helps transfer if a resize is in progress. */ final Node<V>[] helpTransfer(Node<V>[] tab, Node<V> f) { Node<V>[] nextTab; int sc; if (tab != null && (f instanceof ForwardingNode) && (nextTab = ((ForwardingNode<V>)f).nextTable) != null) { int rs = resizeStamp(tab.length); while (nextTab == nextTable && table == tab && (sc = sizeCtl) < 0) { if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || sc == rs + MAX_RESIZERS || transferIndex <= 0) { break; } if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) { transfer(tab, nextTab); break; } } return nextTab; } return table; } /** * Tries to presize table to accommodate the given number of elements. * * @param size number of elements (doesn't need to be perfectly accurate) */ private void tryPresize(int size) { int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY : tableSizeFor(size + (size >>> 1) + 1); int sc; while ((sc = sizeCtl) >= 0) { Node<V>[] tab = table; int n; if (tab == null || (n = tab.length) == 0) { n = (sc > c) ? sc : c; if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { try { if (table == tab) { @SuppressWarnings("unchecked") Node<V>[] nt = (Node<V>[])new Node<?>[n]; table = nt; sc = n - (n >>> 2); } } finally { sizeCtl = sc; } } } else if (c <= sc || n >= MAXIMUM_CAPACITY) { break; } else if (tab == table) { int rs = resizeStamp(n); if (sc < 0) { Node<V>[] nt; if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || sc == rs + MAX_RESIZERS || (nt = nextTable) == null || transferIndex <= 0) { break; } if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) { transfer(tab, nt); } } else if (U.compareAndSwapInt(this, SIZECTL, sc, (rs << RESIZE_STAMP_SHIFT) + 2)) { transfer(tab, null); } } } } /** * Moves and/or copies the nodes in each bin to new table. See * above for explanation. */ private void transfer(Node<V>[] tab, Node<V>[] nextTab) { int n = tab.length, stride; if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE) { stride = MIN_TRANSFER_STRIDE; // subdivide range } if (nextTab == null) { // initiating try { @SuppressWarnings("unchecked") Node<V>[] nt = (Node<V>[])new Node<?>[n << 1]; nextTab = nt; } catch (Throwable ex) { // try to cope with OOME sizeCtl = Integer.MAX_VALUE; return; } nextTable = nextTab; transferIndex = n; } int nextn = nextTab.length; ForwardingNode<V> fwd = new ForwardingNode<V>(nextTab); boolean advance = true; boolean finishing = false; // to ensure sweep before committing nextTab for (int i = 0, bound = 0; ; ) { Node<V> f; int fh; while (advance) { int nextIndex, nextBound; if (--i >= bound || finishing) { advance = false; } else if ((nextIndex = transferIndex) <= 0) { i = -1; advance = false; } else if (U.compareAndSwapInt (this, TRANSFERINDEX, nextIndex, nextBound = (nextIndex > stride ? nextIndex - stride : 0))) { bound = nextBound; i = nextIndex - 1; advance = false; } } if (i < 0 || i >= n || i + n >= nextn) { int sc; if (finishing) { nextTable = null; table = nextTab; sizeCtl = (n << 1) - (n >>> 1); return; } if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) { if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT) { return; } finishing = advance = true; i = n; // recheck before commit } } else if ((f = tabAt(tab, i)) == null) { advance = casTabAt(tab, i, null, fwd); } else if ((fh = f.hash) == MOVED) { advance = true; // already processed } else { synchronized (f) { if (tabAt(tab, i) == f) { Node<V> ln, hn; if (fh >= 0) { int runBit = fh & n; Node<V> lastRun = f; for (Node<V> p = f.next; p != null; p = p.next) { int b = p.hash & n; if (b != runBit) { runBit = b; lastRun = p; } } if (runBit == 0) { ln = lastRun; hn = null; } else { hn = lastRun; ln = null; } for (Node<V> p = f; p != lastRun; p = p.next) { int ph = p.hash; int pk = p.key; V pv = p.val; if ((ph & n) == 0) { ln = new Node<V>(ph, pk, pv, ln); } else { hn = new Node<V>(ph, pk, pv, hn); } } setTabAt(nextTab, i, ln); setTabAt(nextTab, i + n, hn); setTabAt(tab, i, fwd); advance = true; } else if (f instanceof TreeBin) { TreeBin<V> t = (TreeBin<V>)f; TreeNode<V> lo = null, loTail = null; TreeNode<V> hi = null, hiTail = null; int lc = 0, hc = 0; for (Node<V> e = t.first; e != null; e = e.next) { int h = e.hash; TreeNode<V> p = new TreeNode<V> (h, e.key, e.val, null, null); if ((h & n) == 0) { if ((p.prev = loTail) == null) { lo = p; } else { loTail.next = p; } loTail = p; ++lc; } else { if ((p.prev = hiTail) == null) { hi = p; } else { hiTail.next = p; } hiTail = p; ++hc; } } ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) : (hc != 0) ? new TreeBin<V>(lo) : t; hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) : (lc != 0) ? new TreeBin<V>(hi) : t; setTabAt(nextTab, i, ln); setTabAt(nextTab, i + n, hn); setTabAt(tab, i, fwd); advance = true; } } } } } } /* ---------------- Counter support -------------- */ final long sumCount() { ConcurrentHashMap.CounterCell[] as = counterCells; ConcurrentHashMap.CounterCell a; long sum = baseCount; if (as != null) { for (int i = 0; i < as.length; ++i) { if ((a = as[i]) != null) { sum += a.value; } } } return sum; } // See LongAdder version for explanation private void fullAddCount(long x, boolean wasUncontended) { int h; if ((h = ThreadLocalRandom.getProbe()) == 0) { ThreadLocalRandom.localInit(); // force initialization h = ThreadLocalRandom.getProbe(); wasUncontended = true; } boolean collide = false; // True if last slot nonempty for (; ; ) { ConcurrentHashMap.CounterCell[] as; ConcurrentHashMap.CounterCell a; int n; long v; if ((as = counterCells) != null && (n = as.length) > 0) { if ((a = as[(n - 1) & h]) == null) { if (cellsBusy == 0) { // Try to attach new Cell ConcurrentHashMap.CounterCell r = new ConcurrentHashMap.CounterCell(x); // Optimistic create if (cellsBusy == 0 && U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) { boolean created = false; try { // Recheck under lock ConcurrentHashMap.CounterCell[] rs; int m, j; if ((rs = counterCells) != null && (m = rs.length) > 0 && rs[j = (m - 1) & h] == null) { rs[j] = r; created = true; } } finally { cellsBusy = 0; } if (created) { break; } continue; // Slot is now non-empty } } collide = false; } else if (!wasUncontended) // CAS already known to fail { wasUncontended = true; // Continue after rehash } else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x)) { break; } else if (counterCells != as || n >= NCPU) { collide = false; // At max size or stale } else if (!collide) { collide = true; } else if (cellsBusy == 0 && U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) { try { if (counterCells == as) {// Expand table unless stale ConcurrentHashMap.CounterCell[] rs = new ConcurrentHashMap.CounterCell[n << 1]; for (int i = 0; i < n; ++i) { rs[i] = as[i]; } counterCells = rs; } } finally { cellsBusy = 0; } collide = false; continue; // Retry with expanded table } h = ThreadLocalRandom.advanceProbe(h); } else if (cellsBusy == 0 && counterCells == as && U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) { boolean init = false; try { // Initialize table if (counterCells == as) { ConcurrentHashMap.CounterCell[] rs = new ConcurrentHashMap.CounterCell[2]; rs[h & 1] = new ConcurrentHashMap.CounterCell(x); counterCells = rs; init = true; } } finally { cellsBusy = 0; } if (init) { break; } } else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x)) { break; // Fall back on using base } } } /* ---------------- Conversion from/to TreeBins -------------- */ /** * Replaces all linked nodes in bin at given index unless table is * too small, in which case resizes instead. */ private void treeifyBin(Node<V>[] tab, int index) { Node<V> b; int n, sc; if (tab != null) { if ((n = tab.length) < MIN_TREEIFY_CAPACITY) { tryPresize(n << 1); } else if ((b = tabAt(tab, index)) != null && b.hash >= 0) { synchronized (b) { if (tabAt(tab, index) == b) { TreeNode<V> hd = null, tl = null; for (Node<V> e = b; e != null; e = e.next) { TreeNode<V> p = new TreeNode<V>(e.hash, e.key, e.val, null, null); if ((p.prev = tl) == null) { hd = p; } else { tl.next = p; } tl = p; } setTabAt(tab, index, new TreeBin<V>(hd)); } } } } } /** * Returns a list on non-TreeNodes replacing those in given list. */ static <V> Node<V> untreeify(Node<V> b) { Node<V> hd = null, tl = null; for (Node<V> q = b; q != null; q = q.next) { Node<V> p = new Node<V>(q.hash, q.key, q.val, null); if (tl == null) { hd = p; } else { tl.next = p; } tl = p; } return hd; } /* ---------------- TreeNodes -------------- */ /** * Nodes for use in TreeBins */ static final class TreeNode<V> extends Node<V> { TreeNode<V> parent; // red-black tree links TreeNode<V> left; TreeNode<V> right; TreeNode<V> prev; // needed to unlink next upon deletion boolean red; TreeNode(int hash, int key, V val, Node<V> next, TreeNode<V> parent) { super(hash, key, val, next); this.parent = parent; } @Override Node<V> find(int h, int k) { return findTreeNode(h, k); } /** * Returns the TreeNode (or null if not found) for the given key * starting at given root. */ final TreeNode<V> findTreeNode(int h, int k) { TreeNode<V> p = this; do { int ph; TreeNode<V> q; TreeNode<V> pl = p.left; TreeNode<V> pr = p.right; if ((ph = p.hash) > h) { p = pl; } else if (ph < h) { p = pr; } else if (p.key == k) { return p; } else if (pl == null) { p = pr; } else if (pr == null) { p = pl; } else if ((q = pr.findTreeNode(h, k)) != null) { return q; } else { p = pl; } } while (p != null); return null; } } /* ---------------- TreeBins -------------- */ /** * TreeNodes used at the heads of bins. TreeBins do not hold user * keys or values, but instead point to list of TreeNodes and * their root. They also maintain a parasitic read-write lock * forcing writers (who hold bin lock) to wait for readers (who do * not) to complete before tree restructuring operations. */ static final class TreeBin<V> extends Node<V> { TreeNode<V> root; volatile TreeNode<V> first; volatile Thread waiter; volatile int lockState; // values for lockState static final int WRITER = 1; // set while holding write lock static final int WAITER = 2; // set when waiting for write lock static final int READER = 4; // increment value for setting read lock /** * Creates bin with initial set of nodes headed by b. */ TreeBin(TreeNode<V> b) { super(TREEBIN, 0, null, null); first = b; TreeNode<V> r = null; for (TreeNode<V> x = b, next; x != null; x = next) { next = (TreeNode<V>)x.next; x.left = x.right = null; if (r == null) { x.parent = null; x.red = false; r = x; } else { int h = x.hash; for (TreeNode<V> p = r; ; ) { int dir, ph; if ((ph = p.hash) > h) { dir = -1; } else if (ph < h) { dir = 1; } else { dir = 0; } TreeNode<V> xp = p; if ((p = (dir <= 0) ? p.left : p.right) == null) { x.parent = xp; if (dir <= 0) { xp.left = x; } else { xp.right = x; } r = balanceInsertion(r, x); break; } } } } root = r; assert checkInvariants(root); } /** * Acquires write lock for tree restructuring. */ private void lockRoot() { if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER)) { contendedLock(); // offload to separate method } } /** * Releases write lock for tree restructuring. */ private void unlockRoot() { lockState = 0; } /** * Possibly blocks awaiting root lock. */ private void contendedLock() { boolean waiting = false; for (int s; ; ) { if (((s = lockState) & ~WAITER) == 0) { if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) { if (waiting) { waiter = null; } return; } } else if ((s & WAITER) == 0) { if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) { waiting = true; waiter = Thread.currentThread(); } } else if (waiting) { LockSupport.park(this); } } } /** * Returns matching node or null if none. Tries to search * using tree comparisons from root, but continues linear * search when lock not available. */ @Override final Node<V> find(int h, int k) { for (Node<V> e = first; e != null; ) { int s; if (((s = lockState) & (WAITER | WRITER)) != 0) { if ((e.key == k)) { return e; } e = e.next; } else if (U.compareAndSwapInt(this, LOCKSTATE, s, s + READER)) { TreeNode<V> r; TreeNode<V> p; try { p = ((r = root) == null ? null : r.findTreeNode(h, k)); } finally { Thread w; if (getAndAddInt(this, LOCKSTATE, -READER) == (READER | WAITER) && (w = waiter) != null) { LockSupport.unpark(w); } } return p; } } return null; } private int getAndAddInt(Object var1, long var2, int var4) { int var5; do { var5 = U.getIntVolatile(var1, var2); } while(!U.compareAndSwapInt(var1, var2, var5, var5 + var4)); return var5; } /** * Finds or adds a node. * * @return null if added */ final TreeNode<V> putTreeVal(int h, int k, V v) { boolean searched = false; for (TreeNode<V> p = root; ; ) { int dir, ph; if (p == null) { first = root = new TreeNode<V>(h, k, v, null, null); break; } else if ((ph = p.hash) > h) { dir = -1; } else if (ph < h) { dir = 1; } else if (p.key == k) { return p; } else { if (!searched) { TreeNode<V> q, ch; searched = true; if (((ch = p.left) != null && (q = ch.findTreeNode(h, k)) != null) || ((ch = p.right) != null && (q = ch.findTreeNode(h, k)) != null)) { return q; } } dir = 0; } TreeNode<V> xp = p; if ((p = (dir <= 0) ? p.left : p.right) == null) { TreeNode<V> x, f = first; first = x = new TreeNode<V>(h, k, v, f, xp); if (f != null) { f.prev = x; } if (dir <= 0) { xp.left = x; } else { xp.right = x; } if (!xp.red) { x.red = true; } else { lockRoot(); try { root = balanceInsertion(root, x); } finally { unlockRoot(); } } break; } } assert checkInvariants(root); return null; } /** * Removes the given node, that must be present before this * call. This is messier than typical red-black deletion code * because we cannot swap the contents of an interior node * with a leaf successor that is pinned by "next" pointers * that are accessible independently of lock. So instead we * swap the tree linkages. * * @return true if now too small, so should be untreeified */ final boolean removeTreeNode(TreeNode<V> p) { TreeNode<V> next = (TreeNode<V>)p.next; TreeNode<V> pred = p.prev; // unlink traversal pointers TreeNode<V> r, rl; if (pred == null) { first = next; } else { pred.next = next; } if (next != null) { next.prev = pred; } if (first == null) { root = null; return true; } if ((r = root) == null || r.right == null || // too small (rl = r.left) == null || rl.left == null) { return true; } lockRoot(); try { TreeNode<V> replacement; TreeNode<V> pl = p.left; TreeNode<V> pr = p.right; if (pl != null && pr != null) { TreeNode<V> s = pr, sl; while ((sl = s.left) != null) // find successor { s = sl; } boolean c = s.red; s.red = p.red; p.red = c; // swap colors TreeNode<V> sr = s.right; TreeNode<V> pp = p.parent; if (s == pr) { // p was s's direct parent p.parent = s; s.right = p; } else { TreeNode<V> sp = s.parent; if ((p.parent = sp) != null) { if (s == sp.left) { sp.left = p; } else { sp.right = p; } } if ((s.right = pr) != null) { pr.parent = s; } } p.left = null; if ((p.right = sr) != null) { sr.parent = p; } if ((s.left = pl) != null) { pl.parent = s; } if ((s.parent = pp) == null) { r = s; } else if (p == pp.left) { pp.left = s; } else { pp.right = s; } if (sr != null) { replacement = sr; } else { replacement = p; } } else if (pl != null) { replacement = pl; } else if (pr != null) { replacement = pr; } else { replacement = p; } if (replacement != p) { TreeNode<V> pp = replacement.parent = p.parent; if (pp == null) { r = replacement; } else if (p == pp.left) { pp.left = replacement; } else { pp.right = replacement; } p.left = p.right = p.parent = null; } root = (p.red) ? r : balanceDeletion(r, replacement); if (p == replacement) { // detach pointers TreeNode<V> pp; if ((pp = p.parent) != null) { if (p == pp.left) { pp.left = null; } else if (p == pp.right) { pp.right = null; } p.parent = null; } } } finally { unlockRoot(); } assert checkInvariants(root); return false; } /* ------------------------------------------------------------ */ // Red-black tree methods, all adapted from CLR static <V> TreeNode<V> rotateLeft(TreeNode<V> root, TreeNode<V> p) { TreeNode<V> r, pp, rl; if (p != null && (r = p.right) != null) { if ((rl = p.right = r.left) != null) { rl.parent = p; } if ((pp = r.parent = p.parent) == null) { (root = r).red = false; } else if (pp.left == p) { pp.left = r; } else { pp.right = r; } r.left = p; p.parent = r; } return root; } static <V> TreeNode<V> rotateRight(TreeNode<V> root, TreeNode<V> p) { TreeNode<V> l, pp, lr; if (p != null && (l = p.left) != null) { if ((lr = p.left = l.right) != null) { lr.parent = p; } if ((pp = l.parent = p.parent) == null) { (root = l).red = false; } else if (pp.right == p) { pp.right = l; } else { pp.left = l; } l.right = p; p.parent = l; } return root; } static <V> TreeNode<V> balanceInsertion(TreeNode<V> root, TreeNode<V> x) { x.red = true; for (TreeNode<V> xp, xpp, xppl, xppr; ; ) { if ((xp = x.parent) == null) { x.red = false; return x; } else if (!xp.red || (xpp = xp.parent) == null) { return root; } if (xp == (xppl = xpp.left)) { if ((xppr = xpp.right) != null && xppr.red) { xppr.red = false; xp.red = false; xpp.red = true; x = xpp; } else { if (x == xp.right) { root = rotateLeft(root, x = xp); xpp = (xp = x.parent) == null ? null : xp.parent; } if (xp != null) { xp.red = false; if (xpp != null) { xpp.red = true; root = rotateRight(root, xpp); } } } } else { if (xppl != null && xppl.red) { xppl.red = false; xp.red = false; xpp.red = true; x = xpp; } else { if (x == xp.left) { root = rotateRight(root, x = xp); xpp = (xp = x.parent) == null ? null : xp.parent; } if (xp != null) { xp.red = false; if (xpp != null) { xpp.red = true; root = rotateLeft(root, xpp); } } } } } } static <V> TreeNode<V> balanceDeletion(TreeNode<V> root, TreeNode<V> x) { for (TreeNode<V> xp, xpl, xpr; ; ) { if (x == null || x == root) { return root; } else if ((xp = x.parent) == null) { x.red = false; return x; } else if (x.red) { x.red = false; return root; } else if ((xpl = xp.left) == x) { if ((xpr = xp.right) != null && xpr.red) { xpr.red = false; xp.red = true; root = rotateLeft(root, xp); xpr = (xp = x.parent) == null ? null : xp.right; } if (xpr == null) { x = xp; } else { TreeNode<V> sl = xpr.left, sr = xpr.right; if ((sr == null || !sr.red) && (sl == null || !sl.red)) { xpr.red = true; x = xp; } else { if (sr == null || !sr.red) { if (sl != null) { sl.red = false; } xpr.red = true; root = rotateRight(root, xpr); xpr = (xp = x.parent) == null ? null : xp.right; } if (xpr != null) { xpr.red = (xp == null) ? false : xp.red; if ((sr = xpr.right) != null) { sr.red = false; } } if (xp != null) { xp.red = false; root = rotateLeft(root, xp); } x = root; } } } else { // symmetric if (xpl != null && xpl.red) { xpl.red = false; xp.red = true; root = rotateRight(root, xp); xpl = (xp = x.parent) == null ? null : xp.left; } if (xpl == null) { x = xp; } else { TreeNode<V> sl = xpl.left, sr = xpl.right; if ((sl == null || !sl.red) && (sr == null || !sr.red)) { xpl.red = true; x = xp; } else { if (sl == null || !sl.red) { if (sr != null) { sr.red = false; } xpl.red = true; root = rotateLeft(root, xpl); xpl = (xp = x.parent) == null ? null : xp.left; } if (xpl != null) { xpl.red = (xp == null) ? false : xp.red; if ((sl = xpl.left) != null) { sl.red = false; } } if (xp != null) { xp.red = false; root = rotateRight(root, xp); } x = root; } } } } } /** * Recursive invariant check */ static <V> boolean checkInvariants(TreeNode<V> t) { TreeNode<V> tp = t.parent, tl = t.left, tr = t.right, tb = t.prev, tn = (TreeNode<V>)t.next; if (tb != null && tb.next != t) { return false; } if (tn != null && tn.prev != t) { return false; } if (tp != null && t != tp.left && t != tp.right) { return false; } if (tl != null && (tl.parent != t || tl.hash > t.hash)) { return false; } if (tr != null && (tr.parent != t || tr.hash < t.hash)) { return false; } if (t.red && tl != null && tl.red && tr != null && tr.red) { return false; } if (tl != null && !checkInvariants(tl)) { return false; } if (tr != null && !checkInvariants(tr)) { return false; } return true; } private static final sun.misc.Unsafe U; private static final long LOCKSTATE; static { try { U = getUnsafe(); Class<?> k = TreeBin.class; LOCKSTATE = U.objectFieldOffset (k.getDeclaredField("lockState")); } catch (Exception e) { throw new Error(e); } } } /* ----------------Table Traversal -------------- */ /** * Records the table, its length, and current traversal index for a * traverser that must process a region of a forwarded table before * proceeding with current table. */ static final class TableStack<V> { int length; int index; Node<V>[] tab; TableStack<V> next; } /** * Encapsulates traversal for methods such as containsValue; also * serves as a base class for other iterators and spliterators. * <p/> * Method advance visits once each still-valid node that was * reachable upon iterator construction. It might miss some that * were added to a bin after the bin was visited, which is OK wrt * consistency guarantees. Maintaining this property in the face * of possible ongoing resizes requires a fair amount of * bookkeeping state that is difficult to optimize away amidst * volatile accesses. Even so, traversal maintains reasonable * throughput. * <p/> * Normally, iteration proceeds bin-by-bin traversing lists. * However, if the table has been resized, then all future steps * must traverse both the bin at the current index as well as at * (index + baseSize); and so on for further resizings. To * paranoically cope with potential sharing by users of iterators * across threads, iteration terminates if a bounds checks fails * for a table read. */ static class Traverser<V> { Node<V>[] tab; // current table; updated if resized Node<V> next; // the next entry to use TableStack<V> stack; TableStack<V> spare; // to save/restore on ForwardingNodes int index; // index of bin to use next int baseIndex; // current index of initial table int baseLimit; // index bound for initial table final int baseSize; // initial table size Traverser(Node<V>[] tab, int size, int index, int limit) { this.tab = tab; baseSize = size; baseIndex = this.index = index; baseLimit = limit; next = null; } /** * Advances if possible, returning next valid node, or null if none. */ final Node<V> advance() { Node<V> e; if ((e = next) != null) { e = e.next; } for (; ; ) { Node<V>[] t; int i; // must use locals in checks int n; if (e != null) { return next = e; } if (baseIndex >= baseLimit || (t = tab) == null || (n = t.length) <= (i = index) || i < 0) { return next = null; } if ((e = tabAt(t, i)) != null && e.hash < 0) { if (e instanceof ForwardingNode) { tab = ((ForwardingNode<V>)e).nextTable; e = null; pushState(t, i, n); continue; } else if (e instanceof TreeBin) { e = ((TreeBin<V>)e).first; } else { e = null; } } if (stack != null) { recoverState(n); } else if ((index = i + baseSize) >= n) { index = ++baseIndex; // visit upper slots if present } } } /** * Saves traversal state upon encountering a forwarding node. */ private void pushState(Node<V>[] t, int i, int n) { TableStack<V> s = spare; // reuse if possible if (s != null) { spare = s.next; } else { s = new TableStack<V>(); } s.tab = t; s.length = n; s.index = i; s.next = stack; stack = s; } /** * Possibly pops traversal state. * * @param n length of current table */ private void recoverState(int n) { TableStack<V> s; int len; while ((s = stack) != null && (index += (len = s.length)) >= n) { n = len; index = s.index; tab = s.tab; s.tab = null; TableStack<V> next = s.next; s.next = spare; // save for reuse stack = next; spare = s; } if (s == null && (index += baseSize) >= n) { index = ++baseIndex; } } } /** * Base of key, value, and entry Iterators. Adds fields to * Traverser to support iterator.remove. */ static class BaseIterator<V> extends Traverser<V> { final ConcurrentIntObjectHashMap<V> map; Node<V> lastReturned; BaseIterator(Node<V>[] tab, int size, int index, int limit, ConcurrentIntObjectHashMap<V> map) { super(tab, size, index, limit); this.map = map; advance(); } public final boolean hasNext() { return next != null; } public final boolean hasMoreElements() { return next != null; } public final void remove() { Node<V> p; if ((p = lastReturned) == null) { throw new IllegalStateException(); } lastReturned = null; map.replaceNode(p.key, null, null); } } static final class ValueIterator<V> extends BaseIterator<V> implements Iterator<V>, Enumeration<V> { ValueIterator(Node<V>[] tab, int index, int size, int limit, ConcurrentIntObjectHashMap<V> map) { super(tab, index, size, limit, map); } @Override public final V next() { Node<V> p; if ((p = next) == null) { throw new NoSuchElementException(); } V v = p.val; lastReturned = p; advance(); return v; } @Override public final V nextElement() { return next(); } } static final class EntryIterator<V> extends BaseIterator<V> implements Iterator<IntEntry<V>> { EntryIterator(Node<V>[] tab, int index, int size, int limit, ConcurrentIntObjectHashMap<V> map) { super(tab, index, size, limit, map); } @Override public final IntEntry<V> next() { Node<V> p; if ((p = next) == null) { throw new NoSuchElementException(); } final int k = p.key; final V v = p.val; lastReturned = p; advance(); return new IntEntry<V>() { @Override public int getKey() { return k; } @NotNull @Override public V getValue() { return v; } }; } } // Parallel bulk operations /* ----------------Views -------------- */ /** * Base class for views. */ abstract static class CollectionView<V, E> implements Collection<E> { final ConcurrentIntObjectHashMap<V> map; CollectionView(ConcurrentIntObjectHashMap<V> map) { this.map = map; } /** * Returns the map backing this view. * * @return the map backing this view */ public ConcurrentIntObjectHashMap<V> getMap() { return map; } /** * Removes all of the elements from this view, by removing all * the mappings from the map backing this view. */ @Override public final void clear() { map.clear(); } @Override public final int size() { return map.size(); } @Override public final boolean isEmpty() { return map.isEmpty(); } // implementations below rely on concrete classes supplying these // abstract methods /** * Returns an iterator over the elements in this collection. * <p/> * <p>The returned iterator is * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>. * * @return an iterator over the elements in this collection */ @NotNull @Override public abstract Iterator<E> iterator(); @Override public abstract boolean contains(Object o); @Override public abstract boolean remove(Object o); private static final String oomeMsg = "Required array size too large"; @NotNull @Override public final Object[] toArray() { long sz = map.mappingCount(); if (sz > MAX_ARRAY_SIZE) { throw new OutOfMemoryError(oomeMsg); } int n = (int)sz; Object[] r = new Object[n]; int i = 0; for (E e : this) { if (i == n) { if (n >= MAX_ARRAY_SIZE) { throw new OutOfMemoryError(oomeMsg); } if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1) { n = MAX_ARRAY_SIZE; } else { n += (n >>> 1) + 1; } r = Arrays.copyOf(r, n); } r[i++] = e; } return (i == n) ? r : Arrays.copyOf(r, i); } @NotNull @Override @SuppressWarnings("unchecked") public final <T> T[] toArray(@NotNull T[] a) { long sz = map.mappingCount(); if (sz > MAX_ARRAY_SIZE) { throw new OutOfMemoryError(oomeMsg); } int m = (int)sz; T[] r = (a.length >= m) ? a : (T[])java.lang.reflect.Array .newInstance(a.getClass().getComponentType(), m); int n = r.length; int i = 0; for (E e : this) { if (i == n) { if (n >= MAX_ARRAY_SIZE) { throw new OutOfMemoryError(oomeMsg); } if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1) { n = MAX_ARRAY_SIZE; } else { n += (n >>> 1) + 1; } r = Arrays.copyOf(r, n); } r[i++] = (T)e; } if (a == r && i < n) { r[i] = null; // null-terminate return r; } return (i == n) ? r : Arrays.copyOf(r, i); } /** * Returns a string representation of this collection. * The string representation consists of the string representations * of the collection's elements in the order they are returned by * its iterator, enclosed in square brackets ({@code "[]"}). * Adjacent elements are separated by the characters {@code ", "} * (comma and space). Elements are converted to strings as by * {@link String#valueOf(Object)}. * * @return a string representation of this collection */ @Override public final String toString() { StringBuilder sb = new StringBuilder(); sb.append('['); Iterator<E> it = iterator(); if (it.hasNext()) { for (; ; ) { Object e = it.next(); sb.append(e == this ? "(this Collection)" : e); if (!it.hasNext()) { break; } sb.append(',').append(' '); } } return sb.append(']').toString(); } @Override public final boolean containsAll(@NotNull Collection<?> c) { if (c != this) { for (Object e : c) { if (e == null || !contains(e)) { return false; } } } return true; } @Override public final boolean removeAll(@NotNull Collection<?> c) { boolean modified = false; for (Iterator<E> it = iterator(); it.hasNext(); ) { if (c.contains(it.next())) { it.remove(); modified = true; } } return modified; } @Override public final boolean retainAll(@NotNull Collection<?> c) { boolean modified = false; for (Iterator<E> it = iterator(); it.hasNext(); ) { if (!c.contains(it.next())) { it.remove(); modified = true; } } return modified; } } /** * A view of a ConcurrentHashMap as a {@link Collection} of * values, in which additions are disabled. This class cannot be * directly instantiated. See {@link #values()}. */ static final class ValuesView<V> extends CollectionView<V, V> implements Collection<V> { ValuesView(ConcurrentIntObjectHashMap<V> map) { super(map); } @Override public final boolean contains(Object o) { return map.containsValue(o); } @Override public final boolean remove(Object o) { if (o != null) { for (Iterator<V> it = iterator(); it.hasNext(); ) { if (o.equals(it.next())) { it.remove(); return true; } } } return false; } @NotNull @Override public final Iterator<V> iterator() { ConcurrentIntObjectHashMap<V> m = map; Node<V>[] t; int f = (t = m.table) == null ? 0 : t.length; return new ValueIterator<V>(t, f, 0, f, m); } @Override public final boolean add(V e) { throw new UnsupportedOperationException(); } @Override public final boolean addAll(@NotNull Collection<? extends V> c) { throw new UnsupportedOperationException(); } } @NotNull @Override public Iterable<IntEntry<V>> entries() { return new EntrySetView<V>(this); } /** * A view of a ConcurrentHashMap as a {@link Set} of (key, value) * entries. This class cannot be directly instantiated. See * {@link #entrySet()}. */ static final class EntrySetView<V> extends CollectionView<V, IntEntry<V>> implements Set<IntEntry<V>> { EntrySetView(ConcurrentIntObjectHashMap<V> map) { super(map); } @Override public boolean contains(Object o) { Object v; Object r; IntEntry<?> e; return ((o instanceof IntEntry) && (r = map.get((e = (IntEntry)o).getKey())) != null && (v = e.getValue()) != null && (v == r || v.equals(r))); } @Override public boolean remove(Object o) { Object v; IntEntry<?> e; return ((o instanceof Map.Entry) && (e = (IntEntry<?>)o) != null && (v = e.getValue()) != null && map.remove(e.getKey(), v)); } /** * @return an iterator over the entries of the backing map */ @NotNull @Override public Iterator<IntEntry<V>> iterator() { ConcurrentIntObjectHashMap<V> m = map; Node<V>[] t; int f = (t = m.table) == null ? 0 : t.length; return new EntryIterator<V>(t, f, 0, f, m); } @Override public boolean add(IntEntry<V> e) { return map.putVal(e.getKey(), e.getValue(), false) == null; } @Override public boolean addAll(Collection<? extends IntEntry<V>> c) { boolean added = false; for (IntEntry<V> e : c) { if (add(e)) { added = true; } } return added; } @Override public final int hashCode() { int h = 0; Node<V>[] t; if ((t = map.table) != null) { Traverser<V> it = new Traverser<V>(t, t.length, 0, t.length); for (Node<V> p; (p = it.advance()) != null; ) { h += p.hashCode(); } } return h; } @Override public final boolean equals(Object o) { Set<?> c; return ((o instanceof Set) && ((c = (Set<?>)o) == this || (containsAll(c) && c.containsAll(this)))); } } // ------------------------------------------------------- // Unsafe mechanics private static final sun.misc.Unsafe U; private static final long SIZECTL; private static final long TRANSFERINDEX; private static final long BASECOUNT; private static final long CELLSBUSY; private static final long CELLVALUE; private static final long ABASE; private static final int ASHIFT; static { try { U = getUnsafe(); Class<?> k = ConcurrentIntObjectHashMap.class; SIZECTL = U.objectFieldOffset (k.getDeclaredField("sizeCtl")); TRANSFERINDEX = U.objectFieldOffset (k.getDeclaredField("transferIndex")); BASECOUNT = U.objectFieldOffset (k.getDeclaredField("baseCount")); CELLSBUSY = U.objectFieldOffset (k.getDeclaredField("cellsBusy")); Class<?> ck = ConcurrentHashMap.CounterCell.class; CELLVALUE = U.objectFieldOffset (ck.getDeclaredField("value")); Class<?> ak = Node[].class; ABASE = U.arrayBaseOffset(ak); int scale = U.arrayIndexScale(ak); if ((scale & (scale - 1)) != 0) { throw new Error("data type scale not a power of two"); } ASHIFT = 31 - Integer.numberOfLeadingZeros(scale); } catch (Exception e) { throw new Error(e); } } /** * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package. * Replace with a simple call to Unsafe.getUnsafe when integrating * into a jdk. * * @return a sun.misc.Unsafe */ private static Unsafe getUnsafe() { return AtomicFieldUpdater.getUnsafe(); } ////////////////////// IJ specific /** * @return value if there is no entry in the map, or corresponding value if entry already exists */ @Override @NotNull public V cacheOrGet(final int key, @NotNull final V defaultValue) { V v = get(key); if (v != null) return v; V prev = putIfAbsent(key, defaultValue); return prev == null ? defaultValue : prev; } }