/* * Copyright 2000-2014 JetBrains s.r.o. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * Written by Doug Lea with assistance from members of JCP JSR-166 * Expert Group and released to the public domain, as explained at * http://creativecommons.org/publicdomain/zero/1.0/ */ package com.intellij.util.containers; import com.intellij.util.IncorrectOperationException; import com.intellij.util.concurrency.AtomicFieldUpdater; import gnu.trove.TObjectHashingStrategy; import org.jetbrains.annotations.NotNull; import sun.misc.Unsafe; import java.lang.reflect.ParameterizedType; import java.lang.reflect.Type; import java.util.*; import java.util.HashMap; import java.util.concurrent.ConcurrentMap; import java.util.concurrent.locks.LockSupport; // IJ specific: // copied from Doug Lea ConcurrentHashMap (see http://gee.cs.oswego.edu/dl/concurrency-interest/index.html) except: // added hashing strategy argument // Null keys are NOT allowed // Null values are NOT allowed // NOT serializable /** * A hash table supporting full concurrency of retrievals and * high expected concurrency for updates. This class obeys the * same functional specification as {@link java.util.Hashtable}, and * includes versions of methods corresponding to each method of * {@code Hashtable}. However, even though all operations are * thread-safe, retrieval operations do <em>not</em> entail locking, * and there is <em>not</em> any support for locking the entire table * in a way that prevents all access. This class is fully * interoperable with {@code Hashtable} in programs that rely on its * thread safety but not on its synchronization details. * <p/> * <p>Retrieval operations (including {@code get}) generally do not * block, so may overlap with update operations (including {@code put} * and {@code remove}). Retrievals reflect the results of the most * recently <em>completed</em> update operations holding upon their * onset. (More formally, an update operation for a given key bears a * <em>happens-before</em> relation with any (non-null) retrieval for * that key reporting the updated value.) For aggregate operations * such as {@code putAll} and {@code clear}, concurrent retrievals may * reflect insertion or removal of only some entries. Similarly, * Iterators, Spliterators and Enumerations return elements reflecting the * state of the hash table at some point at or since the creation of the * iterator/enumeration. They do <em>not</em> throw {@link * java.util.ConcurrentModificationException ConcurrentModificationException}. * However, iterators are designed to be used by only one thread at a time. * Bear in mind that the results of aggregate status methods including * {@code size}, {@code isEmpty}, and {@code containsValue} are typically * useful only when a map is not undergoing concurrent updates in other threads. * Otherwise the results of these methods reflect transient states * that may be adequate for monitoring or estimation purposes, but not * for program control. * <p/> * <p>The table is dynamically expanded when there are too many * collisions (i.e., keys that have distinct hash codes but fall into * the same slot modulo the table size), with the expected average * effect of maintaining roughly two bins per mapping (corresponding * to a 0.75 load factor threshold for resizing). There may be much * variance around this average as mappings are added and removed, but * overall, this maintains a commonly accepted time/space tradeoff for * hash tables. However, resizing this or any other kind of hash * table may be a relatively slow operation. When possible, it is a * good idea to provide a size estimate as an optional {@code * initialCapacity} constructor argument. An additional optional * {@code loadFactor} constructor argument provides a further means of * customizing initial table capacity by specifying the table density * to be used in calculating the amount of space to allocate for the * given number of elements. Also, for compatibility with previous * versions of this class, constructors may optionally specify an * expected {@code concurrencyLevel} as an additional hint for * internal sizing. Note that using many keys with exactly the same * {@code hashCode()} is a sure way to slow down performance of any * hash table. To ameliorate impact, when keys are {@link Comparable}, * this class may use comparison order among keys to help break ties. * <p/> * <p>A ConcurrentHashMap can be used as a scalable frequency map (a * form of histogram or multiset) by using {@link * java.util.concurrent.atomic.LongAdder} values and initializing via * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use * {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();} * <p/> * <p>This class and its views and iterators implement all of the * <em>optional</em> methods of the {@link Map} and {@link Iterator} * interfaces. * <p/> * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class * does <em>not</em> allow {@code null} to be used as a key or value. * <p/> * <p>ConcurrentHashMaps support a set of sequential and parallel bulk * operations that, unlike most Stream methods, are designed * to be safely, and often sensibly, applied even with maps that are * being concurrently updated by other threads; for example, when * computing a snapshot summary of the values in a shared registry. * There are three kinds of operation, each with four forms, accepting * functions with Keys, Values, Entries, and (Key, Value) arguments * and/or return values. Because the elements of a ConcurrentHashMap * are not ordered in any particular way, and may be processed in * different orders in different parallel executions, the correctness * of supplied functions should not depend on any ordering, or on any * other objects or values that may transiently change while * computation is in progress; and except for forEach actions, should * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry} * objects do not support method {@code setValue}. * <p/> * <ul> * <li> forEach: Perform a given action on each element. * A variant form applies a given transformation on each element * before performing the action.</li> * <p/> * <li> search: Return the first available non-null result of * applying a given function on each element; skipping further * search when a result is found.</li> * <p/> * <li> reduce: Accumulate each element. The supplied reduction * function cannot rely on ordering (more formally, it should be * both associative and commutative). There are five variants: * <p/> * <ul> * <p/> * <li> Plain reductions. (There is not a form of this method for * (key, value) function arguments since there is no corresponding * return type.)</li> * <p/> * <li> Mapped reductions that accumulate the results of a given * function applied to each element.</li> * <p/> * <li> Reductions to scalar doubles, longs, and ints, using a * given basis value.</li> * <p/> * </ul> * </li> * </ul> * <p/> * <p>These bulk operations accept a {@code parallelismThreshold} * argument. Methods proceed sequentially if the current map size is * estimated to be less than the given threshold. Using a value of * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value * of {@code 1} results in maximal parallelism by partitioning into * enough subtasks to fully utilize the * ForkJoinPool#commonPool() that is used for all parallel * computations. Normally, you would initially choose one of these * extreme values, and then measure performance of using in-between * values that trade off overhead versus throughput. * <p/> * <p>The concurrency properties of bulk operations follow * from those of ConcurrentHashMap: Any non-null result returned * from {@code get(key)} and related access methods bears a * happens-before relation with the associated insertion or * update. The result of any bulk operation reflects the * composition of these per-element relations (but is not * necessarily atomic with respect to the map as a whole unless it * is somehow known to be quiescent). Conversely, because keys * and values in the map are never null, null serves as a reliable * atomic indicator of the current lack of any result. To * maintain this property, null serves as an implicit basis for * all non-scalar reduction operations. For the double, long, and * int versions, the basis should be one that, when combined with * any other value, returns that other value (more formally, it * should be the identity element for the reduction). Most common * reductions have these properties; for example, computing a sum * with basis 0 or a minimum with basis MAX_VALUE. * <p/> * <p>Search and transformation functions provided as arguments * should similarly return null to indicate the lack of any result * (in which case it is not used). In the case of mapped * reductions, this also enables transformations to serve as * filters, returning null (or, in the case of primitive * specializations, the identity basis) if the element should not * be combined. You can create compound transformations and * filterings by composing them yourself under this "null means * there is nothing there now" rule before using them in search or * reduce operations. * <p/> * <p>Methods accepting and/or returning Entry arguments maintain * key-value associations. They may be useful for example when * finding the key for the greatest value. Note that "plain" Entry * arguments can be supplied using {@code new * AbstractMap.SimpleEntry(k,v)}. * <p/> * <p>Bulk operations may complete abruptly, throwing an * exception encountered in the application of a supplied * function. Bear in mind when handling such exceptions that other * concurrently executing functions could also have thrown * exceptions, or would have done so if the first exception had * not occurred. * <p/> * <p>Speedups for parallel compared to sequential forms are common * but not guaranteed. Parallel operations involving brief functions * on small maps may execute more slowly than sequential forms if the * underlying work to parallelize the computation is more expensive * than the computation itself. Similarly, parallelization may not * lead to much actual parallelism if all processors are busy * performing unrelated tasks. * <p/> * <p>All arguments to all task methods must be non-null. * <p/> * <p>This class is a member of the * <a href="{@docRoot}/../technotes/guides/collections/index.html"> * Java Collections Framework</a>. * * @param <K> the type of keys maintained by this map * @param <V> the type of mapped values * @author Doug Lea * @since 1.5 * @deprecated Use {@link ContainerUtil#newConcurrentMap()} instead */ public final class ConcurrentHashMap<K, V> extends AbstractMap<K, V> implements ConcurrentMap<K, V>, TObjectHashingStrategy<K> { /* * Overview: * * The primary design goal of this hash table is to maintain * concurrent readability (typically method get(), but also * iterators and related methods) while minimizing update * contention. Secondary goals are to keep space consumption about * the same or better than java.util.HashMap, and to support high * initial insertion rates on an empty table by many threads. * * This map usually acts as a binned (bucketed) hash table. Each * key-value mapping is held in a Node. Most nodes are instances * of the basic Node class with hash, key, value, and next * fields. However, various subclasses exist: TreeNodes are * arranged in balanced trees, not lists. TreeBins hold the roots * of sets of TreeNodes. ForwardingNodes are placed at the heads * of bins during resizing. ReservationNodes are used as * placeholders while establishing values in computeIfAbsent and * related methods. The types TreeBin, ForwardingNode, and * ReservationNode do not hold normal user keys, values, or * hashes, and are readily distinguishable during search etc * because they have negative hash fields and null key and value * fields. (These special nodes are either uncommon or transient, * so the impact of carrying around some unused fields is * insignificant.) * * The table is lazily initialized to a power-of-two size upon the * first insertion. Each bin in the table normally contains a * list of Nodes (most often, the list has only zero or one Node). * Table accesses require volatile/atomic reads, writes, and * CASes. Because there is no other way to arrange this without * adding further indirections, we use intrinsics * (sun.misc.Unsafe) operations. * * We use the top (sign) bit of Node hash fields for control * purposes -- it is available anyway because of addressing * constraints. Nodes with negative hash fields are specially * handled or ignored in map methods. * * Insertion (via put or its variants) of the first node in an * empty bin is performed by just CASing it to the bin. This is * by far the most common case for put operations under most * key/hash distributions. Other update operations (insert, * delete, and replace) require locks. We do not want to waste * the space required to associate a distinct lock object with * each bin, so instead use the first node of a bin list itself as * a lock. Locking support for these locks relies on builtin * "synchronized" monitors. * * Using the first node of a list as a lock does not by itself * suffice though: When a node is locked, any update must first * validate that it is still the first node after locking it, and * retry if not. Because new nodes are always appended to lists, * once a node is first in a bin, it remains first until deleted * or the bin becomes invalidated (upon resizing). * * The main disadvantage of per-bin locks is that other update * operations on other nodes in a bin list protected by the same * lock can stall, for example when user equals() or mapping * functions take a long time. However, statistically, under * random hash codes, this is not a common problem. Ideally, the * frequency of nodes in bins follows a Poisson distribution * (http://en.wikipedia.org/wiki/Poisson_distribution) with a * parameter of about 0.5 on average, given the resizing threshold * of 0.75, although with a large variance because of resizing * granularity. Ignoring variance, the expected occurrences of * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The * first values are: * * 0: 0.60653066 * 1: 0.30326533 * 2: 0.07581633 * 3: 0.01263606 * 4: 0.00157952 * 5: 0.00015795 * 6: 0.00001316 * 7: 0.00000094 * 8: 0.00000006 * more: less than 1 in ten million * * Lock contention probability for two threads accessing distinct * elements is roughly 1 / (8 * #elements) under random hashes. * * Actual hash code distributions encountered in practice * sometimes deviate significantly from uniform randomness. This * includes the case when N > (1<<30), so some keys MUST collide. * Similarly for dumb or hostile usages in which multiple keys are * designed to have identical hash codes or ones that differs only * in masked-out high bits. So we use a secondary strategy that * applies when the number of nodes in a bin exceeds a * threshold. These TreeBins use a balanced tree to hold nodes (a * specialized form of red-black trees), bounding search time to * O(log N). Each search step in a TreeBin is at least twice as * slow as in a regular list, but given that N cannot exceed * (1<<64) (before running out of addresses) this bounds search * steps, lock hold times, etc, to reasonable constants (roughly * 100 nodes inspected per operation worst case) so long as keys * are Comparable (which is very common -- String, Long, etc). * TreeBin nodes (TreeNodes) also maintain the same "next" * traversal pointers as regular nodes, so can be traversed in * iterators in the same way. * * The table is resized when occupancy exceeds a percentage * threshold (nominally, 0.75, but see below). Any thread * noticing an overfull bin may assist in resizing after the * initiating thread allocates and sets up the replacement array. * However, rather than stalling, these other threads may proceed * with insertions etc. The use of TreeBins shields us from the * worst case effects of overfilling while resizes are in * progress. Resizing proceeds by transferring bins, one by one, * from the table to the next table. However, threads claim small * blocks of indices to transfer (via field transferIndex) before * doing so, reducing contention. A generation stamp in field * sizeCtl ensures that resizings do not overlap. Because we are * using power-of-two expansion, the elements from each bin must * either stay at same index, or move with a power of two * offset. We eliminate unnecessary node creation by catching * cases where old nodes can be reused because their next fields * won't change. On average, only about one-sixth of them need * cloning when a table doubles. The nodes they replace will be * garbage collectable as soon as they are no longer referenced by * any reader thread that may be in the midst of concurrently * traversing table. Upon transfer, the old table bin contains * only a special forwarding node (with hash field "MOVED") that * contains the next table as its key. On encountering a * forwarding node, access and update operations restart, using * the new table. * * Each bin transfer requires its bin lock, which can stall * waiting for locks while resizing. However, because other * threads can join in and help resize rather than contend for * locks, average aggregate waits become shorter as resizing * progresses. The transfer operation must also ensure that all * accessible bins in both the old and new table are usable by any * traversal. This is arranged in part by proceeding from the * last bin (table.length - 1) up towards the first. Upon seeing * a forwarding node, traversals (see class Traverser) arrange to * move to the new table without revisiting nodes. To ensure that * no intervening nodes are skipped even when moved out of order, * a stack (see class TableStack) is created on first encounter of * a forwarding node during a traversal, to maintain its place if * later processing the current table. The need for these * save/restore mechanics is relatively rare, but when one * forwarding node is encountered, typically many more will be. * So Traversers use a simple caching scheme to avoid creating so * many new TableStack nodes. (Thanks to Peter Levart for * suggesting use of a stack here.) * * The traversal scheme also applies to partial traversals of * ranges of bins (via an alternate Traverser constructor) * to support partitioned aggregate operations. Also, read-only * operations give up if ever forwarded to a null table, which * provides support for shutdown-style clearing, which is also not * currently implemented. * * Lazy table initialization minimizes footprint until first use, * and also avoids resizings when the first operation is from a * putAll, constructor with map argument, or deserialization. * These cases attempt to override the initial capacity settings, * but harmlessly fail to take effect in cases of races. * * The element count is maintained using a specialization of * LongAdder. We need to incorporate a specialization rather than * just use a LongAdder in order to access implicit * contention-sensing that leads to creation of multiple * CounterCells. The counter mechanics avoid contention on * updates but can encounter cache thrashing if read too * frequently during concurrent access. To avoid reading so often, * resizing under contention is attempted only upon adding to a * bin already holding two or more nodes. Under uniform hash * distributions, the probability of this occurring at threshold * is around 13%, meaning that only about 1 in 8 puts check * threshold (and after resizing, many fewer do so). * * TreeBins use a special form of comparison for search and * related operations (which is the main reason we cannot use * existing collections such as TreeMaps). TreeBins contain * Comparable elements, but may contain others, as well as * elements that are Comparable but not necessarily Comparable for * the same T, so we cannot invoke compareTo among them. To handle * this, the tree is ordered primarily by hash value, then by * Comparable.compareTo order if applicable. On lookup at a node, * if elements are not comparable or compare as 0 then both left * and right children may need to be searched in the case of tied * hash values. (This corresponds to the full list search that * would be necessary if all elements were non-Comparable and had * tied hashes.) On insertion, to keep a total ordering (or as * close as is required here) across rebalancings, we compare * classes and identityHashCodes as tie-breakers. The red-black * balancing code is updated from pre-jdk-collections * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java) * based in turn on Cormen, Leiserson, and Rivest "Introduction to * Algorithms" (CLR). * * TreeBins also require an additional locking mechanism. While * list traversal is always possible by readers even during * updates, tree traversal is not, mainly because of tree-rotations * that may change the root node and/or its linkages. TreeBins * include a simple read-write lock mechanism parasitic on the * main bin-synchronization strategy: Structural adjustments * associated with an insertion or removal are already bin-locked * (and so cannot conflict with other writers) but must wait for * ongoing readers to finish. Since there can be only one such * waiter, we use a simple scheme using a single "waiter" field to * block writers. However, readers need never block. If the root * lock is held, they proceed along the slow traversal path (via * next-pointers) until the lock becomes available or the list is * exhausted, whichever comes first. These cases are not fast, but * maximize aggregate expected throughput. * * Maintaining API and serialization compatibility with previous * versions of this class introduces several oddities. Mainly: We * leave untouched but unused constructor arguments refering to * concurrencyLevel. We accept a loadFactor constructor argument, * but apply it only to initial table capacity (which is the only * time that we can guarantee to honor it.) We also declare an * unused "Segment" class that is instantiated in minimal form * only when serializing. * * Also, solely for compatibility with previous versions of this * class, it extends AbstractMap, even though all of its methods * are overridden, so it is just useless baggage. * * This file is organized to make things a little easier to follow * while reading than they might otherwise: First the main static * declarations and utilities, then fields, then main public * methods (with a few factorings of multiple public methods into * internal ones), then sizing methods, trees, traversers, and * bulk operations. */ /* ---------------- Constants -------------- */ /** * The largest possible table capacity. This value must be * exactly 1<<30 to stay within Java array allocation and indexing * bounds for power of two table sizes, and is further required * because the top two bits of 32bit hash fields are used for * control purposes. */ private static final int MAXIMUM_CAPACITY = 1 << 30; /** * The default initial table capacity. Must be a power of 2 * (i.e., at least 1) and at most MAXIMUM_CAPACITY. */ static final int DEFAULT_CAPACITY = 16; /** * The largest possible (non-power of two) array size. * Needed by toArray and related methods. */ private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; /** * The load factor for this table. Overrides of this value in * constructors affect only the initial table capacity. The * actual floating point value isn't normally used -- it is * simpler to use expressions such as {@code n - (n >>> 2)} for * the associated resizing threshold. */ static final float LOAD_FACTOR = 0.75f; /** * The bin count threshold for using a tree rather than list for a * bin. Bins are converted to trees when adding an element to a * bin with at least this many nodes. The value must be greater * than 2, and should be at least 8 to mesh with assumptions in * tree removal about conversion back to plain bins upon * shrinkage. */ private static final int TREEIFY_THRESHOLD = 8; /** * The bin count threshold for untreeifying a (split) bin during a * resize operation. Should be less than TREEIFY_THRESHOLD, and at * most 6 to mesh with shrinkage detection under removal. */ private static final int UNTREEIFY_THRESHOLD = 6; /** * The smallest table capacity for which bins may be treeified. * (Otherwise the table is resized if too many nodes in a bin.) * The value should be at least 4 * TREEIFY_THRESHOLD to avoid * conflicts between resizing and treeification thresholds. */ private static final int MIN_TREEIFY_CAPACITY = 64; /** * Minimum number of rebinnings per transfer step. Ranges are * subdivided to allow multiple resizer threads. This value * serves as a lower bound to avoid resizers encountering * excessive memory contention. The value should be at least * DEFAULT_CAPACITY. */ private static final int MIN_TRANSFER_STRIDE = 16; /** * The number of bits used for generation stamp in sizeCtl. * Must be at least 6 for 32bit arrays. */ private static final int RESIZE_STAMP_BITS = 16; /** * The maximum number of threads that can help resize. * Must fit in 32 - RESIZE_STAMP_BITS bits. */ private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1; /** * The bit shift for recording size stamp in sizeCtl. */ private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS; /* * Encodings for Node hash fields. See above for explanation. */ private static final int MOVED = -1; // hash for forwarding nodes private static final int TREEBIN = -2; // hash for roots of trees private static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash /** * Number of CPUS, to place bounds on some sizings */ private static final int NCPU = Runtime.getRuntime().availableProcessors(); /* ---------------- Nodes -------------- */ /** * Key-value entry. This class is never exported out as a * user-mutable Map.Entry (i.e., one supporting setValue; see * MapEntry below), but can be used for read-only traversals used * in bulk tasks. Subclasses of Node with a negative hash field * are special, and contain null keys and values (but are never * exported). Otherwise, keys and vals are never null. */ private static class Node<K, V> implements Map.Entry<K, V> { final int hash; final K key; volatile V val; volatile Node<K, V> next; @NotNull final TObjectHashingStrategy<K> myHashingStrategy; Node(int hash, K key, V val, Node<K, V> next, @NotNull TObjectHashingStrategy<K> hashingStrategy) { this.hash = hash; this.key = key; this.val = val; this.next = next; myHashingStrategy = hashingStrategy; } @Override public final K getKey() { return key; } @Override public final V getValue() { return val; } @Override public final int hashCode() { return key.hashCode() ^ val.hashCode(); } @Override public final String toString() { return key + "=" + val; } @Override public final V setValue(V value) { throw new UnsupportedOperationException(); } @Override public final boolean equals(Object o) { Object k; Object v; Object u; Map.Entry<?, ?> e; return o instanceof Entry && (k = (e = (Entry<?, ?>)o).getKey()) != null && (v = e.getValue()) != null && (k == key || myHashingStrategy.equals((K)k, key)) && (v == (u = val) || v.equals(u)); } /** * Virtualized support for map.get(); overridden in subclasses. */ Node<K, V> find(int h, Object k) { Node<K, V> e = this; if (k != null) { do { K ek; if (e.hash == h && ((ek = e.key) == k || ek != null && myHashingStrategy.equals((K)k, ek))) { return e; } } while ((e = e.next) != null); } return null; } } /* ---------------- Static utilities -------------- */ /** * Spreads (XORs) higher bits of hash to lower and also forces top * bit to 0. Because the table uses power-of-two masking, sets of * hashes that vary only in bits above the current mask will * always collide. (Among known examples are sets of Float keys * holding consecutive whole numbers in small tables.) So we * apply a transform that spreads the impact of higher bits * downward. There is a tradeoff between speed, utility, and * quality of bit-spreading. Because many common sets of hashes * are already reasonably distributed (so don't benefit from * spreading), and because we use trees to handle large sets of * collisions in bins, we just XOR some shifted bits in the * cheapest possible way to reduce systematic lossage, as well as * to incorporate impact of the highest bits that would otherwise * never be used in index calculations because of table bounds. */ private static int spread(int h) { return (h ^ (h >>> 16)) & HASH_BITS; } /** * Returns a power of two table size for the given desired capacity. * See Hackers Delight, sec 3.2 */ private static int tableSizeFor(int c) { int n = c - 1; n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; } /** * Returns x's Class if it is of the form "class C implements * Comparable<C>", else null. */ private static Class<?> comparableClassFor(Object x) { if (x instanceof Comparable) { Class<?> c; Type[] ts, as; Type t; ParameterizedType p; if ((c = x.getClass()) == String.class) // bypass checks { return c; } if ((ts = c.getGenericInterfaces()) != null) { for (int i = 0; i < ts.length; ++i) { if (((t = ts[i]) instanceof ParameterizedType) && ((p = (ParameterizedType)t).getRawType() == Comparable.class) && (as = p.getActualTypeArguments()) != null && as.length == 1 && as[0] == c) // type arg is c { return c; } } } } return null; } /** * Returns k.compareTo(x) if x matches kc (k's screened comparable * class), else 0. */ @SuppressWarnings({"rawtypes", "unchecked"}) // for cast to Comparable private static int compareComparables(Class<?> kc, Object k, Object x) { return (x == null || x.getClass() != kc ? 0 : ((Comparable)k).compareTo(x)); } /* ---------------- Table element access -------------- */ /* * Volatile access methods are used for table elements as well as * elements of in-progress next table while resizing. All uses of * the tab arguments must be null checked by callers. All callers * also paranoically precheck that tab's length is not zero (or an * equivalent check), thus ensuring that any index argument taking * the form of a hash value anded with (length - 1) is a valid * index. Note that, to be correct wrt arbitrary concurrency * errors by users, these checks must operate on local variables, * which accounts for some odd-looking inline assignments below. * Note that calls to setTabAt always occur within locked regions, * and so in principle require only release ordering, not * full volatile semantics, but are currently coded as volatile * writes to be conservative. */ @SuppressWarnings("unchecked") private static <K, V> Node<K, V> tabAt(Node<K, V>[] tab, int i) { return (Node<K, V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE); } private static <K, V> boolean casTabAt(Node<K, V>[] tab, int i, Node<K, V> c, Node<K, V> v) { return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v); } private static <K, V> void setTabAt(Node<K, V>[] tab, int i, Node<K, V> v) { U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v); } /* ---------------- Fields -------------- */ /** * The array of bins. Lazily initialized upon first insertion. * Size is always a power of two. Accessed directly by iterators. */ private transient volatile Node<K, V>[] table; /** * The next table to use; non-null only while resizing. */ private transient volatile Node<K, V>[] nextTable; /** * Base counter value, used mainly when there is no contention, * but also as a fallback during table initialization * races. Updated via CAS. */ private transient volatile long baseCount; /** * Table initialization and resizing control. When negative, the * table is being initialized or resized: -1 for initialization, * else -(1 + the number of active resizing threads). Otherwise, * when table is null, holds the initial table size to use upon * creation, or 0 for default. After initialization, holds the * next element count value upon which to resize the table. */ private transient volatile int sizeCtl; /** * The next table index (plus one) to split while resizing. */ private transient volatile int transferIndex; /** * Spinlock (locked via CAS) used when resizing and/or creating CounterCells. */ private transient volatile int cellsBusy; /** * Table of counter cells. When non-null, size is a power of 2. */ private transient volatile CounterCell[] counterCells; // views private transient KeySetView<K, V> keySet; private transient ValuesView<K, V> values; private transient EntrySetView<K, V> entrySet; @NotNull private final TObjectHashingStrategy<K> myHashingStrategy; /* ---------------- Public operations -------------- */ /** * Creates a new, empty map with the default initial table size (16). */ public ConcurrentHashMap() { this(DEFAULT_CAPACITY); } /** * Creates a new, empty map with an initial table size * accommodating the specified number of elements without the need * to dynamically resize. * * @param initialCapacity The implementation performs internal * sizing to accommodate this many elements. * @throws IllegalArgumentException if the initial capacity of * elements is negative */ public ConcurrentHashMap(int initialCapacity) { this(initialCapacity, LOAD_FACTOR); } /** * Creates a new map with the same mappings as the given map. * * @param m the map */ public ConcurrentHashMap(Map<? extends K, ? extends V> m) { this(DEFAULT_CAPACITY); putAll(m); } /** * Creates a new, empty map with an initial table size based on * the given number of elements ({@code initialCapacity}) and * initial table density ({@code loadFactor}). * * @param initialCapacity the initial capacity. The implementation * performs internal sizing to accommodate this many elements, * given the specified load factor. * @param loadFactor the load factor (table density) for * establishing the initial table size * @throws IllegalArgumentException if the initial capacity of * elements is negative or the load factor is nonpositive * @since 1.6 */ public ConcurrentHashMap(int initialCapacity, float loadFactor) { this(initialCapacity, loadFactor, 1); } /** * Creates a new, empty map with an initial table size based on * the given number of elements ({@code initialCapacity}), table * density ({@code loadFactor}), and number of concurrently * updating threads ({@code concurrencyLevel}). * * @param initialCapacity the initial capacity. The implementation * performs internal sizing to accommodate this many elements, * given the specified load factor. * @param loadFactor the load factor (table density) for * establishing the initial table size * @param concurrencyLevel the estimated number of concurrently * updating threads. The implementation may use this value as * a sizing hint. * @throws IllegalArgumentException if the initial capacity is * negative or the load factor or concurrencyLevel are * nonpositive */ public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel) { this(initialCapacity, loadFactor, concurrencyLevel, THIS); } private static final TObjectHashingStrategy THIS = new TObjectHashingStrategy() { @Override public int computeHashCode(Object object) { throw new IncorrectOperationException(); } @Override public boolean equals(Object o1, Object o2) { throw new IncorrectOperationException(); } }; public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel, @NotNull TObjectHashingStrategy<K> hashingStrategy) { if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0) { throw new IllegalArgumentException(); } if (initialCapacity < concurrencyLevel) // Use at least as many bins { initialCapacity = concurrencyLevel; // as estimated threads } long size = (long)(1.0 + (long)initialCapacity / loadFactor); int cap = (size >= (long)MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : tableSizeFor((int)size); this.sizeCtl = cap; myHashingStrategy = hashingStrategy == THIS ? this : hashingStrategy; } public ConcurrentHashMap(@NotNull TObjectHashingStrategy<K> hashingStrategy) { this(DEFAULT_CAPACITY, LOAD_FACTOR, NCPU, hashingStrategy); } // Original (since JDK1.2) Map methods /** * {@inheritDoc} */ @Override public int size() { long n = sumCount(); return ((n < 0L) ? 0 : (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE : (int)n); } /** * {@inheritDoc} */ @Override public boolean isEmpty() { return sumCount() <= 0L; // ignore transient negative values } /** * Returns the value to which the specified key is mapped, * or {@code null} if this map contains no mapping for the key. * <p/> * <p>More formally, if this map contains a mapping from a key * {@code k} to a value {@code v} such that {@code key.equals(k)}, * then this method returns {@code v}; otherwise it returns * {@code null}. (There can be at most one such mapping.) * * @throws NullPointerException if the specified key is null */ @Override public V get(@NotNull Object key) { Node<K, V>[] tab; Node<K, V> e, p; int n, eh; int h = hash((K)key); if ((tab = table) != null && (n = tab.length) > 0 && (e = tabAt(tab, (n - 1) & h)) != null) { if ((eh = e.hash) == h) { if (isEqual((K)key, e.key)) { return e.val; } } else if (eh < 0) { return (p = e.find(h, key)) != null ? p.val : null; } while ((e = e.next) != null) { if (e.hash == h && (isEqual((K)key, e.key))) { return e.val; } } } return null; } /** * Tests if the specified object is a key in this table. * * @param key possible key * @return {@code true} if and only if the specified object * is a key in this table, as determined by the * {@code equals} method; {@code false} otherwise * @throws NullPointerException if the specified key is null */ @Override public boolean containsKey(Object key) { return get(key) != null; } /** * Returns {@code true} if this map maps one or more keys to the * specified value. Note: This method may require a full traversal * of the map, and is much slower than method {@code containsKey}. * * @param value value whose presence in this map is to be tested * @return {@code true} if this map maps one or more keys to the * specified value * @throws NullPointerException if the specified value is null */ @Override public boolean containsValue(@NotNull Object value) { Node<K, V>[] t; if ((t = table) != null) { Traverser<K, V> it = new Traverser<K, V>(t, t.length, 0, t.length); for (Node<K, V> p; (p = it.advance()) != null; ) { V v; if ((v = p.val) == value || (v != null && value.equals(v))) { return true; } } } return false; } /** * Maps the specified key to the specified value in this table. * Neither the key nor the value can be null. * <p/> * <p>The value can be retrieved by calling the {@code get} method * with a key that is equal to the original key. * * @param key key with which the specified value is to be associated * @param value value to be associated with the specified key * @return the previous value associated with {@code key}, or * {@code null} if there was no mapping for {@code key} * @throws NullPointerException if the specified key or value is null */ @Override public V put(@NotNull K key, @NotNull V value) { return putVal(key, value, false); } /** * Implementation for put and putIfAbsent */ private V putVal(@NotNull K key, @NotNull V value, boolean onlyIfAbsent) { int hash = hash((K)key); int binCount = 0; for (Node<K, V>[] tab = table; ; ) { Node<K, V> f; int n, i, fh; if (tab == null || (n = tab.length) == 0) { tab = initTable(); } else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) { if (casTabAt(tab, i, null, new Node<K, V>(hash, key, value, null, myHashingStrategy))) { break; // no lock when adding to empty bin } } else if ((fh = f.hash) == MOVED) { tab = helpTransfer(tab, f); } else { V oldVal = null; synchronized (f) { if (tabAt(tab, i) == f) { if (fh >= 0) { binCount = 1; for (Node<K, V> e = f; ; ++binCount) { if (e.hash == hash && (isEqual((K)key, e.key))) { oldVal = e.val; if (!onlyIfAbsent) { e.val = value; } break; } Node<K, V> pred = e; if ((e = e.next) == null) { pred.next = new Node<K, V>(hash, key, value, null, myHashingStrategy); break; } } } else if (f instanceof TreeBin) { Node<K, V> p; binCount = 2; if ((p = ((TreeBin<K, V>)f).putTreeVal(hash, key, value)) != null) { oldVal = p.val; if (!onlyIfAbsent) { p.val = value; } } } } } if (binCount != 0) { if (binCount >= TREEIFY_THRESHOLD) { treeifyBin(tab, i); } if (oldVal != null) { return oldVal; } break; } } } addCount(1L, binCount); return null; } /** * Copies all of the mappings from the specified map to this one. * These mappings replace any mappings that this map had for any of the * keys currently in the specified map. * * @param m mappings to be stored in this map */ @Override public void putAll(Map<? extends K, ? extends V> m) { tryPresize(m.size()); for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) { putVal(e.getKey(), e.getValue(), false); } } /** * Removes the key (and its corresponding value) from this map. * This method does nothing if the key is not in the map. * * @param key the key that needs to be removed * @return the previous value associated with {@code key}, or * {@code null} if there was no mapping for {@code key} * @throws NullPointerException if the specified key is null */ @Override public V remove(Object key) { return replaceNode(key, null, null); } /** * Implementation for the four public remove/replace methods: * Replaces node value with v, conditional upon match of cv if * non-null. If resulting value is null, delete. */ private V replaceNode(Object key, V value, Object cv) { int hash = hash((K)key); for (Node<K, V>[] tab = table; ; ) { Node<K, V> f; int n, i, fh; if (tab == null || (n = tab.length) == 0 || (f = tabAt(tab, i = (n - 1) & hash)) == null) { break; } else if ((fh = f.hash) == MOVED) { tab = helpTransfer(tab, f); } else { V oldVal = null; boolean validated = false; synchronized (f) { if (tabAt(tab, i) == f) { if (fh >= 0) { validated = true; for (Node<K, V> e = f, pred = null; ; ) { if (e.hash == hash && isEqual((K)key, e.key)) { V ev = e.val; if (cv == null || cv == ev || (ev != null && cv.equals(ev))) { oldVal = ev; if (value != null) { e.val = value; } else if (pred != null) { pred.next = e.next; } else { setTabAt(tab, i, e.next); } } break; } pred = e; if ((e = e.next) == null) { break; } } } else if (f instanceof TreeBin) { validated = true; TreeBin<K, V> t = (TreeBin<K, V>)f; TreeNode<K, V> r, p; if ((r = t.root) != null && (p = r.findTreeNode(hash, key, null)) != null) { V pv = p.val; if (cv == null || cv == pv || (pv != null && cv.equals(pv))) { oldVal = pv; if (value != null) { p.val = value; } else if (t.removeTreeNode(p)) { setTabAt(tab, i, untreeify(t.first)); } } } } } } if (validated) { if (oldVal != null) { if (value == null) { addCount(-1L, -1); } return oldVal; } break; } } } return null; } /** * Removes all of the mappings from this map. */ @Override public void clear() { if (isEmpty()) return; long delta = 0L; // negative number of deletions int i = 0; Node<K, V>[] tab = table; while (tab != null && i < tab.length) { int fh; Node<K, V> f = tabAt(tab, i); if (f == null) { ++i; } else if ((fh = f.hash) == MOVED) { tab = helpTransfer(tab, f); i = 0; // restart } else { synchronized (f) { if (tabAt(tab, i) == f) { Node<K, V> p = (fh >= 0 ? f : (f instanceof TreeBin) ? ((TreeBin<K, V>)f).first : null); while (p != null) { --delta; p = p.next; } setTabAt(tab, i++, null); } } } } if (delta != 0L) { addCount(delta, -1); } } /** * Returns a {@link Set} view of the keys contained in this map. * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. The set supports element * removal, which removes the corresponding mapping from this map, * via the {@code Iterator.remove}, {@code Set.remove}, * {@code removeAll}, {@code retainAll}, and {@code clear} * operations. It does not support the {@code add} or * {@code addAll} operations. * <p/> * <p>The view's iterators and spliterators are * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>. * <p/> * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}, * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}. * * @return the set view */ @Override public KeySetView<K, V> keySet() { KeySetView<K, V> ks; return (ks = keySet) != null ? ks : (keySet = new KeySetView<K, V>(this, null)); } /** * Returns a {@link Collection} view of the values contained in this map. * The collection is backed by the map, so changes to the map are * reflected in the collection, and vice-versa. The collection * supports element removal, which removes the corresponding * mapping from this map, via the {@code Iterator.remove}, * {@code Collection.remove}, {@code removeAll}, * {@code retainAll}, and {@code clear} operations. It does not * support the {@code add} or {@code addAll} operations. * <p/> * <p>The view's iterators and spliterators are * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>. * <p/> * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT} * and {@link Spliterator#NONNULL}. * * @return the collection view */ @Override public Collection<V> values() { ValuesView<K, V> vs; return (vs = values) != null ? vs : (values = new ValuesView<K, V>(this)); } /** * Returns a {@link Set} view of the mappings contained in this map. * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. The set supports element * removal, which removes the corresponding mapping from the map, * via the {@code Iterator.remove}, {@code Set.remove}, * {@code removeAll}, {@code retainAll}, and {@code clear} * operations. * <p/> * <p>The view's iterators and spliterators are * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>. * <p/> * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}, * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}. * * @return the set view */ @Override public Set<Map.Entry<K, V>> entrySet() { EntrySetView<K, V> es; return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K, V>(this)); } /** * Returns the hash code value for this {@link Map}, i.e., * the sum of, for each key-value pair in the map, * {@code key.hashCode() ^ value.hashCode()}. * * @return the hash code value for this map */ @Override public int hashCode() { int h = 0; Node<K, V>[] t; if ((t = table) != null) { Traverser<K, V> it = new Traverser<K, V>(t, t.length, 0, t.length); for (Node<K, V> p; (p = it.advance()) != null; ) { h += hash(p.key) ^ p.val.hashCode(); } } return h; } /** * Returns a string representation of this map. The string * representation consists of a list of key-value mappings (in no * particular order) enclosed in braces ("{@code {}}"). Adjacent * mappings are separated by the characters {@code ", "} (comma * and space). Each key-value mapping is rendered as the key * followed by an equals sign ("{@code =}") followed by the * associated value. * * @return a string representation of this map */ @Override public String toString() { Node<K, V>[] t; int f = (t = table) == null ? 0 : t.length; Traverser<K, V> it = new Traverser<K, V>(t, f, 0, f); StringBuilder sb = new StringBuilder(); sb.append('{'); Node<K, V> p; if ((p = it.advance()) != null) { for (; ; ) { K k = p.key; V v = p.val; sb.append(k == this ? "(this Map)" : k); sb.append('='); sb.append(v == this ? "(this Map)" : v); if ((p = it.advance()) == null) { break; } sb.append(',').append(' '); } } return sb.append('}').toString(); } /** * Compares the specified object with this map for equality. * Returns {@code true} if the given object is a map with the same * mappings as this map. This operation may return misleading * results if either map is concurrently modified during execution * of this method. * * @param o object to be compared for equality with this map * @return {@code true} if the specified object is equal to this map */ @Override public boolean equals(Object o) { if (o != this) { if (!(o instanceof Map)) { return false; } Map<?, ?> m = (Map<?, ?>)o; Node<K, V>[] t; int f = (t = table) == null ? 0 : t.length; Traverser<K, V> it = new Traverser<K, V>(t, f, 0, f); for (Node<K, V> p; (p = it.advance()) != null; ) { V val = p.val; Object v = m.get(p.key); if (v == null || (v != val && !v.equals(val))) { return false; } } for (Map.Entry<?, ?> e : m.entrySet()) { Object mk, mv, v; if ((mk = e.getKey()) == null || (mv = e.getValue()) == null || (v = get(mk)) == null || (mv != v && !mv.equals(v))) { return false; } } } return true; } // ConcurrentMap methods /** * {@inheritDoc} * * @return the previous value associated with the specified key, * or {@code null} if there was no mapping for the key * @throws NullPointerException if the specified key or value is null */ @Override public V putIfAbsent(@NotNull K key, @NotNull V value) { return putVal(key, value, true); } /** * {@inheritDoc} * * @throws NullPointerException if the specified key is null */ @Override public boolean remove(@NotNull Object key, Object value) { return value != null && replaceNode(key, null, value) != null; } /** * {@inheritDoc} * * @throws NullPointerException if any of the arguments are null */ @Override public boolean replace(@NotNull K key, @NotNull V oldValue, @NotNull V newValue) { return replaceNode(key, newValue, oldValue) != null; } /** * {@inheritDoc} * * @return the previous value associated with the specified key, * or {@code null} if there was no mapping for the key * @throws NullPointerException if the specified key or value is null */ @Override public V replace(@NotNull K key, @NotNull V value) { return replaceNode(key, value, null); } // Overrides of JDK8+ Map extension method defaults /** * Returns the value to which the specified key is mapped, or the * given default value if this map contains no mapping for the * key. * * @param key the key whose associated value is to be returned * @param defaultValue the value to return if this map contains * no mapping for the given key * @return the mapping for the key, if present; else the default value * @throws NullPointerException if the specified key is null */ @SuppressWarnings("override") //no method in JDK6 public V getOrDefault(@NotNull Object key, V defaultValue) { V v; return (v = get(key)) == null ? defaultValue : v; } // Hashtable legacy methods /** * Returns an enumeration of the keys in this table. * * @return an enumeration of the keys in this table * @see #keySet() */ public Enumeration<K> keys() { Node<K, V>[] t; int f = (t = table) == null ? 0 : t.length; return new KeyIterator<K, V>(t, f, 0, f, this); } /** * Returns an enumeration of the values in this table. * * @return an enumeration of the values in this table * @see #values() */ public Enumeration<V> elements() { Node<K, V>[] t; int f = (t = table) == null ? 0 : t.length; return new ValueIterator<K, V>(t, f, 0, f, this); } // ConcurrentHashMap-only methods /** * Returns the number of mappings. This method should be used * instead of {@link #size} because a ConcurrentHashMap may * contain more mappings than can be represented as an int. The * value returned is an estimate; the actual count may differ if * there are concurrent insertions or removals. * * @return the number of mappings * @since 1.8 */ private long mappingCount() { long n = sumCount(); return (n < 0L) ? 0L : n; // ignore transient negative values } /** * Creates a new {@link Set} backed by a ConcurrentHashMap * from the given type to {@code Boolean.TRUE}. * * @param <K> the element type of the returned set * @return the new set * @since 1.8 */ private static <K> KeySetView<K, Boolean> newKeySet() { return new KeySetView<K, Boolean> (new ConcurrentHashMap<K, Boolean>(), Boolean.TRUE); } /* ---------------- Special Nodes -------------- */ /** * A node inserted at head of bins during transfer operations. */ private static final class ForwardingNode<K, V> extends Node<K, V> { private final Node<K, V>[] nextTable; private ForwardingNode(Node<K, V>[] tab, @NotNull TObjectHashingStrategy<K> hashingStrategy) { super(MOVED, null, null, null, hashingStrategy); this.nextTable = tab; } @Override Node<K, V> find(int h, Object k) { // loop to avoid arbitrarily deep recursion on forwarding nodes outer: for (Node<K, V>[] tab = nextTable; ; ) { Node<K, V> e; int n; if (k == null || tab == null || (n = tab.length) == 0 || (e = tabAt(tab, (n - 1) & h)) == null) { return null; } for (; ; ) { int eh; if ((eh = e.hash) == h && (isEqual((K)k, e.key, myHashingStrategy))) { return e; } if (eh < 0) { if (e instanceof ForwardingNode) { tab = ((ForwardingNode<K, V>)e).nextTable; continue outer; } else { return e.find(h, k); } } if ((e = e.next) == null) { return null; } } } } } /* ---------------- Table Initialization and Resizing -------------- */ /** * Returns the stamp bits for resizing a table of size n. * Must be negative when shifted left by RESIZE_STAMP_SHIFT. */ private static int resizeStamp(int n) { return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1)); } /** * Initializes table, using the size recorded in sizeCtl. */ private Node<K, V>[] initTable() { Node<K, V>[] tab; int sc; while ((tab = table) == null || tab.length == 0) { if ((sc = sizeCtl) < 0) { Thread.yield(); // lost initialization race; just spin } else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { try { if ((tab = table) == null || tab.length == 0) { int n = (sc > 0) ? sc : DEFAULT_CAPACITY; @SuppressWarnings("unchecked") Node<K, V>[] nt = (Node<K, V>[])new Node<?, ?>[n]; table = tab = nt; sc = n - (n >>> 2); } } finally { sizeCtl = sc; } break; } } return tab; } /** * Adds to count, and if table is too small and not already * resizing, initiates transfer. If already resizing, helps * perform transfer if work is available. Rechecks occupancy * after a transfer to see if another resize is already needed * because resizings are lagging additions. * * @param x the count to add * @param check if <0, don't check resize, if <= 1 only check if uncontended */ private void addCount(long x, int check) { CounterCell[] as; long b, s; if ((as = counterCells) != null || !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) { CounterCell a; long v; int m; boolean uncontended = true; if (as == null || (m = as.length - 1) < 0 || (a = as[ThreadLocalRandom.getProbe() & m]) == null || !(uncontended = U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) { fullAddCount(x, uncontended); return; } if (check <= 1) { return; } s = sumCount(); } if (check >= 0) { Node<K, V>[] tab, nt; int n, sc; while (s >= (long)(sc = sizeCtl) && (tab = table) != null && (n = tab.length) < MAXIMUM_CAPACITY) { int rs = resizeStamp(n); if (sc < 0) { if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || sc == rs + MAX_RESIZERS || (nt = nextTable) == null || transferIndex <= 0) { break; } if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) { transfer(tab, nt); } } else if (U.compareAndSwapInt(this, SIZECTL, sc, (rs << RESIZE_STAMP_SHIFT) + 2)) { transfer(tab, null); } s = sumCount(); } } } /** * Helps transfer if a resize is in progress. */ private Node<K, V>[] helpTransfer(Node<K, V>[] tab, Node<K, V> f) { Node<K, V>[] nextTab; int sc; if (tab != null && (f instanceof ForwardingNode) && (nextTab = ((ForwardingNode<K, V>)f).nextTable) != null) { int rs = resizeStamp(tab.length); while (nextTab == nextTable && table == tab && (sc = sizeCtl) < 0) { if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || sc == rs + MAX_RESIZERS || transferIndex <= 0) { break; } if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) { transfer(tab, nextTab); break; } } return nextTab; } return table; } /** * Tries to presize table to accommodate the given number of elements. * * @param size number of elements (doesn't need to be perfectly accurate) */ private void tryPresize(int size) { int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY : tableSizeFor(size + (size >>> 1) + 1); int sc; while ((sc = sizeCtl) >= 0) { Node<K, V>[] tab = table; int n; if (tab == null || (n = tab.length) == 0) { n = (sc > c) ? sc : c; if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { try { if (table == tab) { @SuppressWarnings("unchecked") Node<K, V>[] nt = (Node<K, V>[])new Node<?, ?>[n]; table = nt; sc = n - (n >>> 2); } } finally { sizeCtl = sc; } } } else if (c <= sc || n >= MAXIMUM_CAPACITY) { break; } else if (tab == table) { int rs = resizeStamp(n); if (sc < 0) { Node<K,V>[] nt; if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || sc == rs + MAX_RESIZERS || (nt = nextTable) == null || transferIndex <= 0) break; if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) transfer(tab, nt); } else if (U.compareAndSwapInt(this, SIZECTL, sc, (rs << RESIZE_STAMP_SHIFT) + 2)) { transfer(tab, null); } } } } /** * Moves and/or copies the nodes in each bin to new table. See * above for explanation. */ private void transfer(Node<K, V>[] tab, Node<K, V>[] nextTab) { int n = tab.length, stride; if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE) { stride = MIN_TRANSFER_STRIDE; // subdivide range } if (nextTab == null) { // initiating try { @SuppressWarnings("unchecked") Node<K, V>[] nt = (Node<K, V>[])new Node<?, ?>[n << 1]; nextTab = nt; } catch (Throwable ex) { // try to cope with OOME sizeCtl = Integer.MAX_VALUE; return; } nextTable = nextTab; transferIndex = n; } int nextn = nextTab.length; ForwardingNode<K, V> fwd = new ForwardingNode<K, V>(nextTab, myHashingStrategy); boolean advance = true; boolean finishing = false; // to ensure sweep before committing nextTab for (int i = 0, bound = 0; ; ) { Node<K, V> f; int fh; while (advance) { int nextIndex, nextBound; if (--i >= bound || finishing) { advance = false; } else if ((nextIndex = transferIndex) <= 0) { i = -1; advance = false; } else if (U.compareAndSwapInt (this, TRANSFERINDEX, nextIndex, nextBound = (nextIndex > stride ? nextIndex - stride : 0))) { bound = nextBound; i = nextIndex - 1; advance = false; } } if (i < 0 || i >= n || i + n >= nextn) { int sc; if (finishing) { nextTable = null; table = nextTab; sizeCtl = (n << 1) - (n >>> 1); return; } if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) { if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT) { return; } finishing = advance = true; i = n; // recheck before commit } } else if ((f = tabAt(tab, i)) == null) { advance = casTabAt(tab, i, null, fwd); } else if ((fh = f.hash) == MOVED) { advance = true; // already processed } else { synchronized (f) { if (tabAt(tab, i) == f) { Node<K, V> ln, hn; if (fh >= 0) { int runBit = fh & n; Node<K, V> lastRun = f; for (Node<K, V> p = f.next; p != null; p = p.next) { int b = p.hash & n; if (b != runBit) { runBit = b; lastRun = p; } } if (runBit == 0) { ln = lastRun; hn = null; } else { hn = lastRun; ln = null; } for (Node<K, V> p = f; p != lastRun; p = p.next) { int ph = p.hash; K pk = p.key; V pv = p.val; if ((ph & n) == 0) { ln = new Node<K, V>(ph, pk, pv, ln, myHashingStrategy); } else { hn = new Node<K, V>(ph, pk, pv, hn, myHashingStrategy); } } setTabAt(nextTab, i, ln); setTabAt(nextTab, i + n, hn); setTabAt(tab, i, fwd); advance = true; } else if (f instanceof TreeBin) { TreeBin<K, V> t = (TreeBin<K, V>)f; TreeNode<K, V> lo = null, loTail = null; TreeNode<K, V> hi = null, hiTail = null; int lc = 0, hc = 0; for (Node<K, V> e = t.first; e != null; e = e.next) { int h = e.hash; TreeNode<K, V> p = new TreeNode<K, V>(h, e.key, e.val, null, null, myHashingStrategy); if ((h & n) == 0) { if ((p.prev = loTail) == null) { lo = p; } else { loTail.next = p; } loTail = p; ++lc; } else { if ((p.prev = hiTail) == null) { hi = p; } else { hiTail.next = p; } hiTail = p; ++hc; } } ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) : (hc != 0) ? new TreeBin<K, V>(lo, myHashingStrategy) : t; hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) : (lc != 0) ? new TreeBin<K, V>(hi, myHashingStrategy) : t; setTabAt(nextTab, i, ln); setTabAt(nextTab, i + n, hn); setTabAt(tab, i, fwd); advance = true; } } } } } } /* ---------------- Counter support -------------- */ /** * A padded cell for distributing counts. Adapted from LongAdder * and Striped64. See their internal docs for explanation. */ static final class CounterCell { volatile long p0; volatile long p1; volatile long p2; volatile long p3; volatile long p4; volatile long p5; volatile long p6; volatile long value; volatile long q0; volatile long q1; volatile long q2; volatile long q3; volatile long q4; volatile long q5; volatile long q6; CounterCell(long x) { value = x; } } private long sumCount() { CounterCell[] as = counterCells; CounterCell a; long sum = baseCount; if (as != null) { for (int i = 0; i < as.length; ++i) { if ((a = as[i]) != null) { sum += a.value; } } } return sum; } // See LongAdder version for explanation private void fullAddCount(long x, boolean wasUncontended) { int h; if ((h = ThreadLocalRandom.getProbe()) == 0) { ThreadLocalRandom.localInit(); // force initialization h = ThreadLocalRandom.getProbe(); wasUncontended = true; } boolean collide = false; // True if last slot nonempty for (; ; ) { CounterCell[] as; CounterCell a; int n; long v; if ((as = counterCells) != null && (n = as.length) > 0) { if ((a = as[(n - 1) & h]) == null) { if (cellsBusy == 0) { // Try to attach new Cell CounterCell r = new CounterCell(x); // Optimistic create if (cellsBusy == 0 && U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) { boolean created = false; try { // Recheck under lock CounterCell[] rs; int m, j; if ((rs = counterCells) != null && (m = rs.length) > 0 && rs[j = (m - 1) & h] == null) { rs[j] = r; created = true; } } finally { cellsBusy = 0; } if (created) { break; } continue; // Slot is now non-empty } } collide = false; } else if (!wasUncontended) // CAS already known to fail { wasUncontended = true; // Continue after rehash } else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x)) { break; } else if (counterCells != as || n >= NCPU) { collide = false; // At max size or stale } else if (!collide) { collide = true; } else if (cellsBusy == 0 && U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) { try { if (counterCells == as) {// Expand table unless stale CounterCell[] rs = new CounterCell[n << 1]; for (int i = 0; i < n; ++i) { rs[i] = as[i]; } counterCells = rs; } } finally { cellsBusy = 0; } collide = false; continue; // Retry with expanded table } h = ThreadLocalRandom.advanceProbe(h); } else if (cellsBusy == 0 && counterCells == as && U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) { boolean init = false; try { // Initialize table if (counterCells == as) { CounterCell[] rs = new CounterCell[2]; rs[h & 1] = new CounterCell(x); counterCells = rs; init = true; } } finally { cellsBusy = 0; } if (init) { break; } } else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x)) { break; // Fall back on using base } } } /* ---------------- Conversion from/to TreeBins -------------- */ /** * Replaces all linked nodes in bin at given index unless table is * too small, in which case resizes instead. */ private void treeifyBin(Node<K, V>[] tab, int index) { Node<K, V> b; int n; if (tab != null) { if ((n = tab.length) < MIN_TREEIFY_CAPACITY) { tryPresize(n << 1); } else if ((b = tabAt(tab, index)) != null && b.hash >= 0) { synchronized (b) { if (tabAt(tab, index) == b) { TreeNode<K, V> hd = null, tl = null; for (Node<K, V> e = b; e != null; e = e.next) { TreeNode<K, V> p = new TreeNode<K, V>(e.hash, e.key, e.val, null, null, myHashingStrategy); if ((p.prev = tl) == null) { hd = p; } else { tl.next = p; } tl = p; } setTabAt(tab, index, new TreeBin<K, V>(hd, myHashingStrategy)); } } } } } /** * Returns a list on non-TreeNodes replacing those in given list. */ private static <K, V> Node<K, V> untreeify(Node<K, V> b) { Node<K, V> hd = null, tl = null; for (Node<K, V> q = b; q != null; q = q.next) { Node<K, V> p = new Node<K, V>(q.hash, q.key, q.val, null, q.myHashingStrategy); if (tl == null) { hd = p; } else { tl.next = p; } tl = p; } return hd; } /* ---------------- TreeNodes -------------- */ /** * Nodes for use in TreeBins */ private static final class TreeNode<K, V> extends Node<K, V> { private TreeNode<K, V> parent; // red-black tree links private TreeNode<K, V> left; private TreeNode<K, V> right; private TreeNode<K, V> prev; // needed to unlink next upon deletion private boolean red; TreeNode(int hash, K key, V val, Node<K, V> next, TreeNode<K, V> parent, TObjectHashingStrategy<K> hashingStrategy) { super(hash, key, val, next, hashingStrategy); this.parent = parent; } @Override Node<K, V> find(int h, Object k) { return findTreeNode(h, k, null); } /** * Returns the TreeNode (or null if not found) for the given key * starting at given root. */ private TreeNode<K, V> findTreeNode(int h, Object k, Class<?> kc) { if (k != null) { TreeNode<K, V> p = this; do { int ph, dir; K pk = p.key; TreeNode<K, V> q; TreeNode<K, V> pl = p.left, pr = p.right; if ((ph = p.hash) > h) { p = pl; } else if (ph < h) { p = pr; } else if (isEqual((K)k, pk, myHashingStrategy)) { return p; } else if (pl == null) { p = pr; } else if (pr == null) { p = pl; } else if ((kc != null || (kc = comparableClassFor(k)) != null) && (dir = compareComparables(kc, k, pk)) != 0) { p = (dir < 0) ? pl : pr; } else if ((q = pr.findTreeNode(h, k, kc)) != null) { return q; } else { p = pl; } } while (p != null); } return null; } } /* ---------------- TreeBins -------------- */ /** * TreeNodes used at the heads of bins. TreeBins do not hold user * keys or values, but instead point to list of TreeNodes and * their root. They also maintain a parasitic read-write lock * forcing writers (who hold bin lock) to wait for readers (who do * not) to complete before tree restructuring operations. */ private static final class TreeBin<K, V> extends Node<K, V> { private TreeNode<K, V> root; private volatile TreeNode<K, V> first; private volatile Thread waiter; private volatile int lockState; // values for lockState private static final int WRITER = 1; // set while holding write lock private static final int WAITER = 2; // set when waiting for write lock private static final int READER = 4; // increment value for setting read lock /** * Tie-breaking utility for ordering insertions when equal * hashCodes and non-comparable. We don't require a total * order, just a consistent insertion rule to maintain * equivalence across rebalancings. Tie-breaking further than * necessary simplifies testing a bit. */ private static int tieBreakOrder(Object a, Object b) { int d; if (a == null || b == null || (d = a.getClass().getName(). compareTo(b.getClass().getName())) == 0) { d = (System.identityHashCode(a) <= System.identityHashCode(b) ? -1 : 1); } return d; } /** * Creates bin with initial set of nodes headed by b. */ private TreeBin(TreeNode<K, V> b, TObjectHashingStrategy<K> hashingStrategy) { super(TREEBIN, null, null, null, hashingStrategy); this.first = b; TreeNode<K, V> r = null; for (TreeNode<K, V> x = b, next; x != null; x = next) { next = (TreeNode<K, V>)x.next; x.left = x.right = null; if (r == null) { x.parent = null; x.red = false; r = x; } else { K k = x.key; int h = x.hash; Class<?> kc = null; for (TreeNode<K, V> p = r; ; ) { int dir, ph; K pk = p.key; if ((ph = p.hash) > h) { dir = -1; } else if (ph < h) { dir = 1; } else if ((kc == null && (kc = comparableClassFor(k)) == null) || (dir = compareComparables(kc, k, pk)) == 0) { dir = tieBreakOrder(k, pk); } TreeNode<K, V> xp = p; if ((p = (dir <= 0) ? p.left : p.right) == null) { x.parent = xp; if (dir <= 0) { xp.left = x; } else { xp.right = x; } r = balanceInsertion(r, x); break; } } } } this.root = r; assert checkInvariants(root); } /** * Acquires write lock for tree restructuring. */ private void lockRoot() { if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER)) { contendedLock(); // offload to separate method } } /** * Releases write lock for tree restructuring. */ private void unlockRoot() { lockState = 0; } /** * Possibly blocks awaiting root lock. */ private void contendedLock() { boolean waiting = false; for (int s; ; ) { if (((s = lockState) & ~WAITER) == 0) { if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) { if (waiting) { waiter = null; } return; } } else if ((s & WAITER) == 0) { if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) { waiting = true; waiter = Thread.currentThread(); } } else if (waiting) { LockSupport.park(this); } } } /** * Returns matching node or null if none. Tries to search * using tree comparisons from root, but continues linear * search when lock not available. */ @Override final Node<K, V> find(int h, Object k) { if (k != null) { for (Node<K, V> e = first; e != null; ) { int s; if (((s = lockState) & (WAITER | WRITER)) != 0) { if (e.hash == h && isEqual((K)k, e.key, myHashingStrategy)) { return e; } e = e.next; } else if (U.compareAndSwapInt(this, LOCKSTATE, s, s + READER)) { TreeNode<K, V> r, p; try { p = ((r = root) == null ? null : r.findTreeNode(h, k, null)); } finally { int ls; do { } while (!U.compareAndSwapInt (this, LOCKSTATE, ls = lockState, ls - READER)); Thread w; if (ls == (READER | WAITER) && (w = waiter) != null) { LockSupport.unpark(w); } } return p; } } } return null; } /** * Finds or adds a node. * * @return null if added */ private TreeNode<K, V> putTreeVal(int h, K k, V v) { Class<?> kc = null; boolean searched = false; for (TreeNode<K, V> p = root; ; ) { int dir, ph; if (p == null) { first = root = new TreeNode<K, V>(h, k, v, null, null, myHashingStrategy); break; } K pk = p.key; if ((ph = p.hash) > h) { dir = -1; } else if (ph < h) { dir = 1; } else if (isEqual(k, pk, myHashingStrategy)) { return p; } else if ((kc == null && (kc = comparableClassFor(k)) == null) || (dir = compareComparables(kc, k, pk)) == 0) { if (!searched) { TreeNode<K, V> q, ch; searched = true; if (((ch = p.left) != null && (q = ch.findTreeNode(h, k, kc)) != null) || ((ch = p.right) != null && (q = ch.findTreeNode(h, k, kc)) != null)) { return q; } } dir = tieBreakOrder(k, pk); } TreeNode<K, V> xp = p; if ((p = (dir <= 0) ? p.left : p.right) == null) { TreeNode<K, V> x, f = first; first = x = new TreeNode<K, V>(h, k, v, f, xp, myHashingStrategy); if (f != null) { f.prev = x; } if (dir <= 0) { xp.left = x; } else { xp.right = x; } if (!xp.red) { x.red = true; } else { lockRoot(); try { root = balanceInsertion(root, x); } finally { unlockRoot(); } } break; } } assert checkInvariants(root); return null; } /** * Removes the given node, that must be present before this * call. This is messier than typical red-black deletion code * because we cannot swap the contents of an interior node * with a leaf successor that is pinned by "next" pointers * that are accessible independently of lock. So instead we * swap the tree linkages. * * @return true if now too small, so should be untreeified */ private boolean removeTreeNode(TreeNode<K, V> p) { TreeNode<K, V> next = (TreeNode<K, V>)p.next; TreeNode<K, V> pred = p.prev; // unlink traversal pointers TreeNode<K, V> r, rl; if (pred == null) { first = next; } else { pred.next = next; } if (next != null) { next.prev = pred; } if (first == null) { root = null; return true; } if ((r = root) == null || r.right == null || // too small (rl = r.left) == null || rl.left == null) { return true; } lockRoot(); try { TreeNode<K, V> replacement; TreeNode<K, V> pl = p.left; TreeNode<K, V> pr = p.right; if (pl != null && pr != null) { TreeNode<K, V> s = pr, sl; while ((sl = s.left) != null) // find successor { s = sl; } boolean c = s.red; s.red = p.red; p.red = c; // swap colors TreeNode<K, V> sr = s.right; TreeNode<K, V> pp = p.parent; if (s == pr) { // p was s's direct parent p.parent = s; s.right = p; } else { TreeNode<K, V> sp = s.parent; if ((p.parent = sp) != null) { if (s == sp.left) { sp.left = p; } else { sp.right = p; } } if ((s.right = pr) != null) { pr.parent = s; } } p.left = null; if ((p.right = sr) != null) { sr.parent = p; } if ((s.left = pl) != null) { pl.parent = s; } if ((s.parent = pp) == null) { r = s; } else if (p == pp.left) { pp.left = s; } else { pp.right = s; } if (sr != null) { replacement = sr; } else { replacement = p; } } else if (pl != null) { replacement = pl; } else if (pr != null) { replacement = pr; } else { replacement = p; } if (replacement != p) { TreeNode<K, V> pp = replacement.parent = p.parent; if (pp == null) { r = replacement; } else if (p == pp.left) { pp.left = replacement; } else { pp.right = replacement; } p.left = p.right = p.parent = null; } root = (p.red) ? r : balanceDeletion(r, replacement); if (p == replacement) { // detach pointers TreeNode<K, V> pp; if ((pp = p.parent) != null) { if (p == pp.left) { pp.left = null; } else if (p == pp.right) { pp.right = null; } p.parent = null; } } } finally { unlockRoot(); } assert checkInvariants(root); return false; } /* ------------------------------------------------------------ */ // Red-black tree methods, all adapted from CLR private static <K, V> TreeNode<K, V> rotateLeft(TreeNode<K, V> root, TreeNode<K, V> p) { TreeNode<K, V> r, pp, rl; if (p != null && (r = p.right) != null) { if ((rl = p.right = r.left) != null) { rl.parent = p; } if ((pp = r.parent = p.parent) == null) { (root = r).red = false; } else if (pp.left == p) { pp.left = r; } else { pp.right = r; } r.left = p; p.parent = r; } return root; } private static <K, V> TreeNode<K, V> rotateRight(TreeNode<K, V> root, TreeNode<K, V> p) { TreeNode<K, V> l, pp, lr; if (p != null && (l = p.left) != null) { if ((lr = p.left = l.right) != null) { lr.parent = p; } if ((pp = l.parent = p.parent) == null) { (root = l).red = false; } else if (pp.right == p) { pp.right = l; } else { pp.left = l; } l.right = p; p.parent = l; } return root; } private static <K, V> TreeNode<K, V> balanceInsertion(TreeNode<K, V> root, TreeNode<K, V> x) { x.red = true; for (TreeNode<K, V> xp, xpp, xppl, xppr; ; ) { if ((xp = x.parent) == null) { x.red = false; return x; } else if (!xp.red || (xpp = xp.parent) == null) { return root; } if (xp == (xppl = xpp.left)) { if ((xppr = xpp.right) != null && xppr.red) { xppr.red = false; xp.red = false; xpp.red = true; x = xpp; } else { if (x == xp.right) { root = rotateLeft(root, x = xp); xpp = (xp = x.parent) == null ? null : xp.parent; } if (xp != null) { xp.red = false; if (xpp != null) { xpp.red = true; root = rotateRight(root, xpp); } } } } else { if (xppl != null && xppl.red) { xppl.red = false; xp.red = false; xpp.red = true; x = xpp; } else { if (x == xp.left) { root = rotateRight(root, x = xp); xpp = (xp = x.parent) == null ? null : xp.parent; } if (xp != null) { xp.red = false; if (xpp != null) { xpp.red = true; root = rotateLeft(root, xpp); } } } } } } private static <K, V> TreeNode<K, V> balanceDeletion(TreeNode<K, V> root, TreeNode<K, V> x) { for (TreeNode<K, V> xp, xpl, xpr; ; ) { if (x == null || x == root) { return root; } else if ((xp = x.parent) == null) { x.red = false; return x; } else if (x.red) { x.red = false; return root; } else if ((xpl = xp.left) == x) { if ((xpr = xp.right) != null && xpr.red) { xpr.red = false; xp.red = true; root = rotateLeft(root, xp); xpr = (xp = x.parent) == null ? null : xp.right; } if (xpr == null) { x = xp; } else { TreeNode<K, V> sl = xpr.left, sr = xpr.right; if ((sr == null || !sr.red) && (sl == null || !sl.red)) { xpr.red = true; x = xp; } else { if (sr == null || !sr.red) { if (sl != null) { sl.red = false; } xpr.red = true; root = rotateRight(root, xpr); xpr = (xp = x.parent) == null ? null : xp.right; } if (xpr != null) { xpr.red = (xp == null) ? false : xp.red; if ((sr = xpr.right) != null) { sr.red = false; } } if (xp != null) { xp.red = false; root = rotateLeft(root, xp); } x = root; } } } else { // symmetric if (xpl != null && xpl.red) { xpl.red = false; xp.red = true; root = rotateRight(root, xp); xpl = (xp = x.parent) == null ? null : xp.left; } if (xpl == null) { x = xp; } else { TreeNode<K, V> sl = xpl.left, sr = xpl.right; if ((sl == null || !sl.red) && (sr == null || !sr.red)) { xpl.red = true; x = xp; } else { if (sl == null || !sl.red) { if (sr != null) { sr.red = false; } xpl.red = true; root = rotateLeft(root, xpl); xpl = (xp = x.parent) == null ? null : xp.left; } if (xpl != null) { xpl.red = (xp == null) ? false : xp.red; if ((sl = xpl.left) != null) { sl.red = false; } } if (xp != null) { xp.red = false; root = rotateRight(root, xp); } x = root; } } } } } /** * Recursive invariant check */ private static <K, V> boolean checkInvariants(TreeNode<K, V> t) { TreeNode<K, V> tp = t.parent, tl = t.left, tr = t.right, tb = t.prev, tn = (TreeNode<K, V>)t.next; if (tb != null && tb.next != t) { return false; } if (tn != null && tn.prev != t) { return false; } if (tp != null && t != tp.left && t != tp.right) { return false; } if (tl != null && (tl.parent != t || tl.hash > t.hash)) { return false; } if (tr != null && (tr.parent != t || tr.hash < t.hash)) { return false; } if (t.red && tl != null && tl.red && tr != null && tr.red) { return false; } if (tl != null && !checkInvariants(tl)) { return false; } if (tr != null && !checkInvariants(tr)) { return false; } return true; } private static final Unsafe U; private static final long LOCKSTATE; static { try { U = AtomicFieldUpdater.getUnsafe(); Class<?> k = TreeBin.class; LOCKSTATE = U.objectFieldOffset (k.getDeclaredField("lockState")); } catch (Exception e) { throw new Error(e); } } } /* ----------------Table Traversal -------------- */ /** * Records the table, its length, and current traversal index for a * traverser that must process a region of a forwarded table before * proceeding with current table. */ private static final class TableStack<K, V> { private int length; private int index; private Node<K, V>[] tab; private TableStack<K, V> next; } /** * Encapsulates traversal for methods such as containsValue; also * serves as a base class for other iterators and spliterators. * <p/> * Method advance visits once each still-valid node that was * reachable upon iterator construction. It might miss some that * were added to a bin after the bin was visited, which is OK wrt * consistency guarantees. Maintaining this property in the face * of possible ongoing resizes requires a fair amount of * bookkeeping state that is difficult to optimize away amidst * volatile accesses. Even so, traversal maintains reasonable * throughput. * <p/> * Normally, iteration proceeds bin-by-bin traversing lists. * However, if the table has been resized, then all future steps * must traverse both the bin at the current index as well as at * (index + baseSize); and so on for further resizings. To * paranoically cope with potential sharing by users of iterators * across threads, iteration terminates if a bounds checks fails * for a table read. */ private static class Traverser<K, V> { private Node<K, V>[] tab; // current table; updated if resized Node<K, V> next; // the next entry to use private TableStack<K, V> stack, spare; // to save/restore on ForwardingNodes private int index; // index of bin to use next private int baseIndex; // current index of initial table private final int baseLimit; // index bound for initial table private final int baseSize; // initial table size private Traverser(Node<K, V>[] tab, int size, int index, int limit) { this.tab = tab; this.baseSize = size; this.baseIndex = this.index = index; this.baseLimit = limit; this.next = null; } /** * Advances if possible, returning next valid node, or null if none. */ final Node<K, V> advance() { Node<K, V> e; if ((e = next) != null) { e = e.next; } for (; ; ) { Node<K, V>[] t; int i, n; // must use locals in checks if (e != null) { return next = e; } if (baseIndex >= baseLimit || (t = tab) == null || (n = t.length) <= (i = index) || i < 0) { return next = null; } if ((e = tabAt(t, i)) != null && e.hash < 0) { if (e instanceof ForwardingNode) { tab = ((ForwardingNode<K, V>)e).nextTable; e = null; pushState(t, i, n); continue; } else if (e instanceof TreeBin) { e = ((TreeBin<K, V>)e).first; } else { e = null; } } if (stack != null) { recoverState(n); } else if ((index = i + baseSize) >= n) { index = ++baseIndex; // visit upper slots if present } } } /** * Saves traversal state upon encountering a forwarding node. */ private void pushState(Node<K, V>[] t, int i, int n) { TableStack<K, V> s = spare; // reuse if possible if (s != null) { spare = s.next; } else { s = new TableStack<K, V>(); } s.tab = t; s.length = n; s.index = i; s.next = stack; stack = s; } /** * Possibly pops traversal state. * * @param n length of current table */ private void recoverState(int n) { TableStack<K, V> s; int len; while ((s = stack) != null && (index += (len = s.length)) >= n) { n = len; index = s.index; tab = s.tab; s.tab = null; TableStack<K, V> next = s.next; s.next = spare; // save for reuse stack = next; spare = s; } if (s == null && (index += baseSize) >= n) { index = ++baseIndex; } } } /** * Base of key, value, and entry Iterators. Adds fields to * Traverser to support iterator.remove. */ private static class BaseIterator<K, V> extends Traverser<K, V> { final ConcurrentHashMap<K, V> map; Node<K, V> lastReturned; private BaseIterator(Node<K, V>[] tab, int size, int index, int limit, ConcurrentHashMap<K, V> map) { super(tab, size, index, limit); this.map = map; advance(); } public final boolean hasNext() { return next != null; } public final boolean hasMoreElements() { return next != null; } public final void remove() { Node<K, V> p; if ((p = lastReturned) == null) { throw new IllegalStateException(); } lastReturned = null; map.replaceNode(p.key, null, null); } } private static final class KeyIterator<K, V> extends BaseIterator<K, V> implements Iterator<K>, Enumeration<K> { KeyIterator(Node<K, V>[] tab, int index, int size, int limit, ConcurrentHashMap<K, V> map) { super(tab, index, size, limit, map); } @Override public final K next() { Node<K, V> p; if ((p = next) == null) { throw new NoSuchElementException(); } K k = p.key; lastReturned = p; advance(); return k; } @Override public final K nextElement() { return next(); } } private static final class ValueIterator<K, V> extends BaseIterator<K, V> implements Iterator<V>, Enumeration<V> { ValueIterator(Node<K, V>[] tab, int index, int size, int limit, ConcurrentHashMap<K, V> map) { super(tab, index, size, limit, map); } @Override public final V next() { Node<K, V> p; if ((p = next) == null) { throw new NoSuchElementException(); } V v = p.val; lastReturned = p; advance(); return v; } @Override public final V nextElement() { return next(); } } private static final class EntryIterator<K, V> extends BaseIterator<K, V> implements Iterator<Map.Entry<K, V>> { EntryIterator(Node<K, V>[] tab, int index, int size, int limit, ConcurrentHashMap<K, V> map) { super(tab, index, size, limit, map); } @Override public final Map.Entry<K, V> next() { Node<K, V> p; if ((p = next) == null) { throw new NoSuchElementException(); } K k = p.key; V v = p.val; lastReturned = p; advance(); return new MapEntry<K, V>(k, v, map); } } /** * Exported Entry for EntryIterator */ private static final class MapEntry<K, V> implements Map.Entry<K, V> { private final K key; // non-null private V val; // non-null private final ConcurrentHashMap<K, V> map; MapEntry(K key, V val, ConcurrentHashMap<K, V> map) { this.key = key; this.val = val; this.map = map; } @Override public K getKey() { return key; } @Override public V getValue() { return val; } @Override public int hashCode() { return map.hash((K)key) ^ val.hashCode(); } @Override public String toString() { return key + "=" + val; } @Override public boolean equals(Object o) { Object k, v; Map.Entry<?, ?> e; return ((o instanceof Map.Entry) && (k = (e = (Map.Entry<?, ?>)o).getKey()) != null && (v = e.getValue()) != null && (map.isEqual((K)k, key)) && (v == val || v.equals(val))); } /** * Sets our entry's value and writes through to the map. The * value to return is somewhat arbitrary here. Since we do not * necessarily track asynchronous changes, the most recent * "previous" value could be different from what we return (or * could even have been removed, in which case the put will * re-establish). We do not and cannot guarantee more. */ @Override public V setValue(@NotNull V value) { V v = val; val = value; map.put(key, value); return v; } } /* ----------------Views -------------- */ /** * Base class for views. */ private abstract static class CollectionView<K, V, E> implements Collection<E> { final ConcurrentHashMap<K, V> map; CollectionView(@NotNull ConcurrentHashMap<K, V> map) { this.map = map; } /** * Returns the map backing this view. * * @return the map backing this view */ public ConcurrentHashMap<K, V> getMap() { return map; } /** * Removes all of the elements from this view, by removing all * the mappings from the map backing this view. */ @Override public final void clear() { map.clear(); } @Override public final int size() { return map.size(); } @Override public final boolean isEmpty() { return map.isEmpty(); } // implementations below rely on concrete classes supplying these // abstract methods /** * Returns an iterator over the elements in this collection. * <p/> * <p>The returned iterator is * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>. * * @return an iterator over the elements in this collection */ @Override public abstract Iterator<E> iterator(); @Override public abstract boolean contains(Object o); @Override public abstract boolean remove(Object o); private static final String oomeMsg = "Required array size too large"; @NotNull @Override public final Object[] toArray() { long sz = map.mappingCount(); if (sz > MAX_ARRAY_SIZE) { throw new OutOfMemoryError(oomeMsg); } int n = (int)sz; Object[] r = new Object[n]; int i = 0; for (E e : this) { if (i == n) { if (n >= MAX_ARRAY_SIZE) { throw new OutOfMemoryError(oomeMsg); } if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1) { n = MAX_ARRAY_SIZE; } else { n += (n >>> 1) + 1; } r = Arrays.copyOf(r, n); } r[i++] = e; } return (i == n) ? r : Arrays.copyOf(r, i); } @NotNull @Override @SuppressWarnings("unchecked") public final <T> T[] toArray(@NotNull T[] a) { long sz = map.mappingCount(); if (sz > MAX_ARRAY_SIZE) { throw new OutOfMemoryError(oomeMsg); } int m = (int)sz; T[] r = (a.length >= m) ? a : (T[])java.lang.reflect.Array .newInstance(a.getClass().getComponentType(), m); int n = r.length; int i = 0; for (E e : this) { if (i == n) { if (n >= MAX_ARRAY_SIZE) { throw new OutOfMemoryError(oomeMsg); } if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1) { n = MAX_ARRAY_SIZE; } else { n += (n >>> 1) + 1; } r = Arrays.copyOf(r, n); } r[i++] = (T)e; } if (a == r && i < n) { r[i] = null; // null-terminate return r; } return (i == n) ? r : Arrays.copyOf(r, i); } /** * Returns a string representation of this collection. * The string representation consists of the string representations * of the collection's elements in the order they are returned by * its iterator, enclosed in square brackets ({@code "[]"}). * Adjacent elements are separated by the characters {@code ", "} * (comma and space). Elements are converted to strings as by * {@link String#valueOf(Object)}. * * @return a string representation of this collection */ @Override public final String toString() { StringBuilder sb = new StringBuilder(); sb.append('['); Iterator<E> it = iterator(); if (it.hasNext()) { for (; ; ) { Object e = it.next(); sb.append(e == this ? "(this Collection)" : e); if (!it.hasNext()) { break; } sb.append(',').append(' '); } } return sb.append(']').toString(); } @Override public final boolean containsAll(@NotNull Collection<?> c) { if (c != this) { for (Object e : c) { if (e == null || !contains(e)) { return false; } } } return true; } @Override public final boolean removeAll(@NotNull Collection<?> c) { boolean modified = false; for (Iterator<E> it = iterator(); it.hasNext(); ) { if (c.contains(it.next())) { it.remove(); modified = true; } } return modified; } @Override public final boolean retainAll(@NotNull Collection<?> c) { boolean modified = false; for (Iterator<E> it = iterator(); it.hasNext(); ) { if (!c.contains(it.next())) { it.remove(); modified = true; } } return modified; } } /** * A view of a ConcurrentHashMap as a {@link Set} of keys, in * which additions may optionally be enabled by mapping to a * common value. This class cannot be directly instantiated. * See {@link #keySet() keySet()}, * @since 1.8 */ private static class KeySetView<K, V> extends CollectionView<K, V, K> implements Set<K> { private final V value; KeySetView(ConcurrentHashMap<K, V> map, V value) { // non-public super(map); this.value = value; } /** * Returns the default mapped value for additions, * or {@code null} if additions are not supported. * * @return the default mapped value for additions, or {@code null} * if not supported */ public V getMappedValue() { return value; } /** * {@inheritDoc} * * @throws NullPointerException if the specified key is null */ @Override public boolean contains(Object o) { return map.containsKey(o); } /** * Removes the key from this map view, by removing the key (and its * corresponding value) from the backing map. This method does * nothing if the key is not in the map. * * @param o the key to be removed from the backing map * @return {@code true} if the backing map contained the specified key * @throws NullPointerException if the specified key is null */ @Override public boolean remove(Object o) { return map.remove(o) != null; } /** * @return an iterator over the keys of the backing map */ @NotNull @Override public Iterator<K> iterator() { Node<K, V>[] t; ConcurrentHashMap<K, V> m = map; int f = (t = m.table) == null ? 0 : t.length; return new KeyIterator<K, V>(t, f, 0, f, m); } /** * Adds the specified key to this set view by mapping the key to * the default mapped value in the backing map, if defined. * * @param e key to be added * @return {@code true} if this set changed as a result of the call * @throws NullPointerException if the specified key is null * @throws UnsupportedOperationException if no default mapped value * for additions was provided */ @Override public boolean add(@NotNull K e) { V v; if ((v = value) == null) { throw new UnsupportedOperationException(); } return map.putVal(e, v, true) == null; } /** * Adds all of the elements in the specified collection to this set, * as if by calling {@link #add} on each one. * * @param c the elements to be inserted into this set * @return {@code true} if this set changed as a result of the call * @throws NullPointerException if the collection or any of its * elements are {@code null} * @throws UnsupportedOperationException if no default mapped value * for additions was provided */ @Override public boolean addAll(@NotNull Collection<? extends K> c) { boolean added = false; V v; if ((v = value) == null) { throw new UnsupportedOperationException(); } for (K e : c) { if (map.putVal(e, v, true) == null) { added = true; } } return added; } @Override public int hashCode() { int h = 0; for (K e : this) { h += map.hash(e); } return h; } @Override public boolean equals(Object o) { Set<?> c; return ((o instanceof Set) && ((c = (Set<?>)o) == this || (containsAll(c) && c.containsAll(this)))); } } /** * A view of a ConcurrentHashMap as a {@link Collection} of * values, in which additions are disabled. This class cannot be * directly instantiated. See {@link #values()}. */ private static final class ValuesView<K, V> extends CollectionView<K, V, V> implements Collection<V> { ValuesView(ConcurrentHashMap<K, V> map) { super(map); } @Override public final boolean contains(Object o) { return map.containsValue(o); } @Override public final boolean remove(Object o) { if (o != null) { for (Iterator<V> it = iterator(); it.hasNext(); ) { if (o.equals(it.next())) { it.remove(); return true; } } } return false; } @NotNull @Override public final Iterator<V> iterator() { ConcurrentHashMap<K, V> m = map; Node<K, V>[] t; int f = (t = m.table) == null ? 0 : t.length; return new ValueIterator<K, V>(t, f, 0, f, m); } @Override public final boolean add(V e) { throw new UnsupportedOperationException(); } @Override public final boolean addAll(@NotNull Collection<? extends V> c) { throw new UnsupportedOperationException(); } } /** * A view of a ConcurrentHashMap as a {@link Set} of (key, value) * entries. This class cannot be directly instantiated. See * {@link #entrySet()}. */ private static final class EntrySetView<K, V> extends CollectionView<K, V, Map.Entry<K, V>> implements Set<Map.Entry<K, V>> { private EntrySetView(ConcurrentHashMap<K, V> map) { super(map); } @Override public boolean contains(Object o) { Object k, v, r; Map.Entry<?, ?> e; return ((o instanceof Map.Entry) && (k = (e = (Map.Entry<?, ?>)o).getKey()) != null && (r = map.get(k)) != null && (v = e.getValue()) != null && (v == r || v.equals(r))); } @Override public boolean remove(Object o) { Object k, v; Map.Entry<?, ?> e; return ((o instanceof Map.Entry) && (k = (e = (Map.Entry<?, ?>)o).getKey()) != null && (v = e.getValue()) != null && map.remove(k, v)); } /** * @return an iterator over the entries of the backing map */ @NotNull @Override public Iterator<Map.Entry<K, V>> iterator() { ConcurrentHashMap<K, V> m = map; Node<K, V>[] t; int f = (t = m.table) == null ? 0 : t.length; return new EntryIterator<K, V>(t, f, 0, f, m); } @Override public boolean add(Entry<K, V> e) { return map.putVal(e.getKey(), e.getValue(), false) == null; } @Override public boolean addAll(@NotNull Collection<? extends Entry<K, V>> c) { boolean added = false; for (Entry<K, V> e : c) { if (add(e)) { added = true; } } return added; } @Override public final int hashCode() { int h = 0; Node<K, V>[] t; if ((t = map.table) != null) { Traverser<K, V> it = new Traverser<K, V>(t, t.length, 0, t.length); for (Node<K, V> p; (p = it.advance()) != null; ) { h += p.hashCode(); } } return h; } @Override public final boolean equals(Object o) { Set<?> c; return ((o instanceof Set) && ((c = (Set<?>)o) == this || (containsAll(c) && c.containsAll(this)))); } } // ------------------------------------------------------- // Unsafe mechanics private static final Unsafe U; private static final long SIZECTL; private static final long TRANSFERINDEX; private static final long BASECOUNT; private static final long CELLSBUSY; private static final long CELLVALUE; private static final long ABASE; private static final int ASHIFT; static { try { U = AtomicFieldUpdater.getUnsafe(); Class<?> k = ConcurrentHashMap.class; SIZECTL = U.objectFieldOffset (k.getDeclaredField("sizeCtl")); TRANSFERINDEX = U.objectFieldOffset (k.getDeclaredField("transferIndex")); BASECOUNT = U.objectFieldOffset (k.getDeclaredField("baseCount")); CELLSBUSY = U.objectFieldOffset (k.getDeclaredField("cellsBusy")); Class<?> ck = CounterCell.class; CELLVALUE = U.objectFieldOffset (ck.getDeclaredField("value")); Class<?> ak = Node[].class; ABASE = U.arrayBaseOffset(ak); int scale = U.arrayIndexScale(ak); if ((scale & (scale - 1)) != 0) { throw new Error("data type scale not a power of two"); } ASHIFT = 31 - Integer.numberOfLeadingZeros(scale); } catch (Exception e) { throw new Error(e); } } //////////////// IJ specific @Override public int computeHashCode(final K object) { return object == null ? 0 : object.hashCode(); } @Override public boolean equals(final K o1, final K o2) { return o1.equals(o2); } private int hash(K key) { return spread(myHashingStrategy.computeHashCode(key)); } private boolean isEqual(@NotNull K key1, K key2) { return isEqual(key1, key2, myHashingStrategy); } private static <K> boolean isEqual(@NotNull K key1, K key2, @NotNull TObjectHashingStrategy<K> hashingStrategy) { return key1 == key2 || key2 != null && hashingStrategy.equals(key1, key2); } }