/* * @(#)ArrayList.java 1.46 03/06/22 * * Copyright 2003 Sun Microsystems, Inc. All rights reserved. * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. */ import java.util.AbstractList; import java.util.Collection; import java.util.List; import java.util.RandomAccess; /** * Resizable-array implementation of the <tt>List</tt> interface. Implements * all optional list operations, and permits all elements, including * <tt>null</tt>. In addition to implementing the <tt>List</tt> interface, * this class provides methods to manipulate the size of the array that is * used internally to store the list. (This class is roughly equivalent to * <tt>Vector</tt>, except that it is unsynchronized.)<p> * * The <tt>size</tt>, <tt>isEmpty</tt>, <tt>get</tt>, <tt>set</tt>, * <tt>iterator</tt>, and <tt>listIterator</tt> operations run in constant * time. The <tt>add</tt> operation runs in <i>amortized constant time</i>, * that is, adding n elements requires O(n) time. All of the other operations * run in linear time (roughly speaking). The constant factor is low compared * to that for the <tt>LinkedList</tt> implementation.<p> * * Each <tt>ArrayList</tt> instance has a <i>capacity</i>. The capacity is * the size of the array used to store the elements in the list. It is always * at least as large as the list size. As elements are added to an ArrayList, * its capacity grows automatically. The details of the growth policy are not * specified beyond the fact that adding an element has constant amortized * time cost.<p> * * An application can increase the capacity of an <tt>ArrayList</tt> instance * before adding a large number of elements using the <tt>ensureCapacity</tt> * operation. This may reduce the amount of incremental reallocation.<p> * * <strong>Note that this implementation is not synchronized.</strong> If * multiple threads access an <tt>ArrayList</tt> instance concurrently, and at * least one of the threads modifies the list structurally, it <i>must</i> be * synchronized externally. (A structural modification is any operation that * adds or deletes one or more elements, or explicitly resizes the backing * array; merely setting the value of an element is not a structural * modification.) This is typically accomplished by synchronizing on some * object that naturally encapsulates the list. If no such object exists, the * list should be "wrapped" using the <tt>Collections.synchronizedList</tt> * method. This is best done at creation time, to prevent accidental * unsynchronized access to the list: * <pre> * List list = Collections.synchronizedList(new ArrayList(...)); * </pre><p> * * The iterators returned by this class's <tt>iterator</tt> and * <tt>listIterator</tt> methods are <i>fail-fast</i>: if list is structurally * modified at any time after the iterator is created, in any way except * through the iterator's own remove or add methods, the iterator will throw a * ConcurrentModificationException. Thus, in the face of concurrent * modification, the iterator fails quickly and cleanly, rather than risking * arbitrary, non-deterministic behavior at an undetermined time in the * future.<p> * * Note that the fail-fast behavior of an iterator cannot be guaranteed * as it is, generally speaking, impossible to make any hard guarantees in the * presence of unsynchronized concurrent modification. Fail-fast iterators * throw <tt>ConcurrentModificationException</tt> on a best-effort basis. * Therefore, it would be wrong to write a program that depended on this * exception for its correctness: <i>the fail-fast behavior of iterators * should be used only to detect bugs.</i><p> * * This class is a member of the * <a href="{@docRoot}/../guide/collections/index.html"> * Java Collections Framework</a>. * * @author Josh Bloch * @author Neal Gafter * @version 1.46, 06/22/03 * @see java.util.Collection * @see java.util.List * @see LinkedList * @see Vector * @see java.util.Collections#synchronizedList(java.util.List) * @since 1.2 */ public class Bar<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, java.io.Serializable { private static final long serialVersionUID = 8683452581122892189L; /** * The array buffer into which the elements of the ArrayList are stored. * The capacity of the ArrayList is the length of this array buffer. */ private transient E[] elementData; /** * The size of the ArrayList (the number of elements it contains). * * @serial */ private int size; /** * Constructs an empty list with the specified initial capacity. * * @param initialCapacity the initial capacity of the list. * @exception IllegalArgumentException if the specified initial capacity * is negative */ public Bar(int initialCapacity) { super(); if (initialCapacity < 0) throw new IllegalArgumentException("Illegal Capacity: "+ initialCapacity); this.elementData = (E[])new Object[initialCapacity]; } /** * Constructs an empty list with an initial capacity of ten. */ public Bar() { this(10); } /** * Constructs a list containing the elements of the specified * collection, in the order they are returned by the collection's * iterator. The <tt>ArrayList</tt> instance has an initial capacity of * 110% the size of the specified collection. * * @param c the collection whose elements are to be placed into this list. * @throws NullPointerException if the specified collection is null. */ public Bar(Collection<? extends E> c) { size = c.size(); // Allow 10% room for growth elementData = (E[])new Object[ (int)Math.min((size*110L)/100,Integer.MAX_VALUE)]; c.toArray(elementData); } /** * Trims the capacity of this <tt>ArrayList</tt> instance to be the * list's current size. An application can use this operation to minimize * the storage of an <tt>ArrayList</tt> instance. */ public void trimToSize() { modCount++; int oldCapacity = elementData.length; if (size < oldCapacity) { Object oldData[] = elementData; elementData = (E[])new Object[size]; System.arraycopy(oldData, 0, elementData, 0, size); } } /** * Increases the capacity of this <tt>ArrayList</tt> instance, if * necessary, to ensure that it can hold at least the number of elements * specified by the minimum capacity argument. * * @param minCapacity the desired minimum capacity. */ public void ensureCapacity(int minCapacity) { modCount++; int oldCapacity = elementData.length; if (minCapacity > oldCapacity) { Object oldData[] = elementData; int newCapacity = (oldCapacity * 3)/2 + 1; if (newCapacity < minCapacity) newCapacity = minCapacity; elementData = (E[])new Object[newCapacity]; System.arraycopy(oldData, 0, elementData, 0, size); } } /** * Returns the number of elements in this list. * * @return the number of elements in this list. */ public int size() { return size; } /** * Tests if this list has no elements. * * @return <tt>true</tt> if this list has no elements; * <tt>false</tt> otherwise. */ public boolean isEmpty() { return size == 0; } /** * Returns <tt>true</tt> if this list contains the specified element. * * @param elem element whose presence in this List is to be tested. * @return <code>true</code> if the specified element is present; * <code>false</code> otherwise. */ public boolean contains(Object elem) { return indexOf(elem) >= 0; } /** * Searches for the first occurence of the given argument, testing * for equality using the <tt>equals</tt> method. * * @param elem an object. * @return the index of the first occurrence of the argument in this * list; returns <tt>-1</tt> if the object is not found. * @see Object#equals(Object) */ public int indexOf(Object elem) { if (elem == null) { for (int i = 0; i < size; i++) if (elementData[i]==null) return i; } else { for (int i = 0; i < size; i++) if (elem.equals(elementData[i])) return i; } return -1; } /** * Returns the index of the last occurrence of the specified object in * this list. * * @param elem the desired element. * @return the index of the last occurrence of the specified object in * this list; returns -1 if the object is not found. */ public int lastIndexOf(Object elem) { if (elem == null) { for (int i = size-1; i >= 0; i--) if (elementData[i]==null) return i; } else { for (int i = size-1; i >= 0; i--) if (elem.equals(elementData[i])) return i; } return -1; } /** * Returns a shallow copy of this <tt>ArrayList</tt> instance. (The * elements themselves are not copied.) * * @return a clone of this <tt>ArrayList</tt> instance. */ public Object clone() { try { Bar<E> v = (Bar<E>) super.clone(); v.elementData = (E[])new Object[size]; System.arraycopy(elementData, 0, v.elementData, 0, size); v.modCount = 0; return v; } catch (CloneNotSupportedException e) { // this shouldn't happen, since we are Cloneable throw new InternalError(); } } /** * Returns an array containing all of the elements in this list * in the correct order. * * @return an array containing all of the elements in this list * in the correct order. */ public Object[] toArray() { Object[] result = new Object[size]; System.arraycopy(elementData, 0, result, 0, size); return result; } /** * Returns an array containing all of the elements in this list in the * correct order; the runtime type of the returned array is that of the * specified array. If the list fits in the specified array, it is * returned therein. Otherwise, a new array is allocated with the runtime * type of the specified array and the size of this list.<p> * * If the list fits in the specified array with room to spare (i.e., the * array has more elements than the list), the element in the array * immediately following the end of the collection is set to * <tt>null</tt>. This is useful in determining the length of the list * <i>only</i> if the caller knows that the list does not contain any * <tt>null</tt> elements. * * @param a the array into which the elements of the list are to * be stored, if it is big enough; otherwise, a new array of the * same runtime type is allocated for this purpose. * @return an array containing the elements of the list. * @throws ArrayStoreException if the runtime type of a is not a supertype * of the runtime type of every element in this list. */ public <T> T[] toArray(T[] a) { if (a.length < size) a = (T[])java.lang.reflect.Array. newInstance(a.getClass().getComponentType(), size); System.arraycopy(elementData, 0, a, 0, size); if (a.length > size) a[size] = null; return a; } // Positional Access Operations /** * Returns the element at the specified position in this list. * * @param index index of element to return. * @return the element at the specified position in this list. * @throws IndexOutOfBoundsException if index is out of range <tt>(index * < 0 || index >= size())</tt>. */ public E get(int index) { RangeCheck(index); return elementData[index]; } /** * Replaces the element at the specified position in this list with * the specified element. * * @param index index of element to replace. * @param element element to be stored at the specified position. * @return the element previously at the specified position. * @throws IndexOutOfBoundsException if index out of range * <tt>(index < 0 || index >= size())</tt>. */ public E set(int index, E element) { RangeCheck(index); E oldValue = elementData[index]; elementData[index] = element; return oldValue; } /** * Appends the specified element to the end of this list. * * @param o element to be appended to this list. * @return <tt>true</tt> (as per the general contract of Collection.add). */ public boolean add(E o) { ensureCapacity(size + 1); // Increments modCount!! elementData[size++] = o; return true; } /** * Inserts the specified element at the specified position in this * list. Shifts the element currently at that position (if any) and * any subsequent elements to the right (adds one to their indices). * * @param index index at which the specified element is to be inserted. * @param element element to be inserted. * @throws IndexOutOfBoundsException if index is out of range * <tt>(index < 0 || index > size())</tt>. */ public void add(int index, E element) { if (index > size || index < 0) throw new IndexOutOfBoundsException( "Index: "+index+", Size: "+size); ensureCapacity(size+1); // Increments modCount!! System.arraycopy(elementData, index, elementData, index + 1, size - index); elementData[index] = element; size++; } /** * Removes the element at the specified position in this list. * Shifts any subsequent elements to the left (subtracts one from their * indices). * * @param index the index of the element to removed. * @return the element that was removed from the list. * @throws IndexOutOfBoundsException if index out of range <tt>(index * < 0 || index >= size())</tt>. */ public E remove(int index) { RangeCheck(index); modCount++; E oldValue = elementData[index]; int numMoved = size - index - 1; if (numMoved > 0) System.arraycopy(elementData, index+1, elementData, index, numMoved); elementData[--size] = null; // Let gc do its work return oldValue; } /** * Removes a single instance of the specified element from this * list, if it is present (optional operation). More formally, * removes an element <tt>e</tt> such that <tt>(o==null ? e==null : * o.equals(e))</tt>, if the list contains one or more such * elements. Returns <tt>true</tt> if the list contained the * specified element (or equivalently, if the list changed as a * result of the call).<p> * * @param o element to be removed from this list, if present. * @return <tt>true</tt> if the list contained the specified element. */ public boolean remove(Object o) { if (o == null) { for (int index = 0; index < size; index++) if (elementData[index] == null) { fastRemove(index); return true; } } else { for (int index = 0; index < size; index++) if (o.equals(elementData[index])) { fastRemove(index); return true; } } return false; } /* * Private remove method that skips bounds checking and does not * return the value removed. */ private void fastRemove(int index) { modCount++; int numMoved = size - index - 1; if (numMoved > 0) System.arraycopy(elementData, index+1, elementData, index, numMoved); elementData[--size] = null; // Let gc do its work } /** * Removes all of the elements from this list. The list will * be empty after this call returns. */ public void clear() { modCount++; // Let gc do its work for (int i = 0; i < size; i++) elementData[i] = null; size = 0; } /** * Appends all of the elements in the specified Collection to the end of * this list, in the order that they are returned by the * specified Collection's Iterator. The behavior of this operation is * undefined if the specified Collection is modified while the operation * is in progress. (This implies that the behavior of this call is * undefined if the specified Collection is this list, and this * list is nonempty.) * * @param c the elements to be inserted into this list. * @return <tt>true</tt> if this list changed as a result of the call. * @throws NullPointerException if the specified collection is null. */ public boolean addAll(Collection<? extends E> c) { Object[] a = c.toArray(); int numNew = a.length; ensureCapacity(size + numNew); // Increments modCount System.arraycopy(a, 0, elementData, size, numNew); size += numNew; return numNew != 0; } /** * Inserts all of the elements in the specified Collection into this * list, starting at the specified position. Shifts the element * currently at that position (if any) and any subsequent elements to * the right (increases their indices). The new elements will appear * in the list in the order that they are returned by the * specified Collection's iterator. * * @param index index at which to insert first element * from the specified collection. * @param c elements to be inserted into this list. * @return <tt>true</tt> if this list changed as a result of the call. * @throws IndexOutOfBoundsException if index out of range <tt>(index * < 0 || index > size())</tt>. * @throws NullPointerException if the specified Collection is null. */ public boolean addAll(int index, Collection<? extends E> c) { if (index > size || index < 0) throw new IndexOutOfBoundsException( "Index: " + index + ", Size: " + size); Object[] a = c.toArray(); int numNew = a.length; ensureCapacity(size + numNew); // Increments modCount int numMoved = size - index; if (numMoved > 0) System.arraycopy(elementData, index, elementData, index + numNew, numMoved); System.arraycopy(a, 0, elementData, index, numNew); size += numNew; return numNew != 0; } /** * Removes from this List all of the elements whose index is between * fromIndex, inclusive and toIndex, exclusive. Shifts any succeeding * elements to the left (reduces their index). * This call shortens the list by <tt>(toIndex - fromIndex)</tt> elements. * (If <tt>toIndex==fromIndex</tt>, this operation has no effect.) * * @param fromIndex index of first element to be removed. * @param toIndex index after last element to be removed. */ protected void removeRange(int fromIndex, int toIndex) { modCount++; int numMoved = size - toIndex; System.arraycopy(elementData, toIndex, elementData, fromIndex, numMoved); // Let gc do its work int newSize = size - (toIndex-fromIndex); while (size != newSize) elementData[--size] = null; } /** * Check if the given index is in range. If not, throw an appropriate * runtime exception. This method does *not* check if the index is * negative: It is always used immediately prior to an array access, * which throws an ArrayIndexOutOfBoundsException if index is negative. */ private void RangeCheck(int index) { if (index >= size) throw new IndexOutOfBoundsException( "Index: "+index+", Size: "+size); } /** * Save the state of the <tt>ArrayList</tt> instance to a stream (that * is, serialize it). * * @serialData The length of the array backing the <tt>ArrayList</tt> * instance is emitted (int), followed by all of its elements * (each an <tt>Object</tt>) in the proper order. */ private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException{ // Write out element count, and any hidden stuff s.defaultWriteObject(); // Write out array length s.writeInt(elementData.length); // Write out all elements in the proper order. for (int i=0; i<size; i++) s.writeObject(elementData[i]); } /** * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is, * deserialize it). */ private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { // Read in size, and any hidden stuff s.defaultReadObject(); // Read in array length and allocate array int arrayLength = s.readInt(); Object[] a = elementData = (E[])new Object[arrayLength]; // Read in all elements in the proper order. for (int i=0; i<size; i++) a[i] = s.readObject(); } }