package gdsc.smlm.function.gaussian.erf; import gdsc.smlm.function.Gradient1Procedure; import gdsc.smlm.function.Gradient2Procedure; import gdsc.smlm.function.ValueProcedure; /*----------------------------------------------------------------------------- * GDSC SMLM Software * * Copyright (C) 2017 Alex Herbert * Genome Damage and Stability Centre * University of Sussex, UK * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. *---------------------------------------------------------------------------*/ /** * Evaluates a 2-dimensional Gaussian function for a single peak. */ public class SingleNBFreeCircularErfGaussian2DFunction extends SingleFreeCircularErfGaussian2DFunction { static final int[] gradientIndices; static { gradientIndices = createGradientIndices(1, new SingleNBFreeCircularErfGaussian2DFunction(1, 1)); } /** * Constructor. * * @param maxx * The maximum x value of the 2-dimensional data (used to unpack a linear index into coordinates) * @param maxy * The maximum y value of the 2-dimensional data (used to unpack a linear index into coordinates) */ public SingleNBFreeCircularErfGaussian2DFunction(int maxx, int maxy) { super(maxx, maxy); } @Override public ErfGaussian2DFunction copy() { return new SingleNBFreeCircularErfGaussian2DFunction(maxx, maxy); } /** * Evaluates an 2-dimensional Gaussian function for a single peak. * * @param i * Input predictor * @param duda * Partial gradient of function with respect to each coefficient * @return The predicted value * * @see gdsc.smlm.function.NonLinearFunction#eval(int, double[]) */ public double eval(final int i, final double[] duda) { // Unpack the predictor into the dimensions final int y = i / maxx; final int x = i % maxx; // Return in order of Gaussian2DFunction.createGradientIndices(). // Use pre-computed gradients duda[0] = deltaEx[x] * deltaEy[y]; duda[1] = du_dtx[x] * deltaEy[y]; duda[2] = du_dty[y] * deltaEx[x]; duda[3] = du_dtsx[x] * deltaEy[y]; duda[4] = du_dtsy[y] * deltaEx[x]; return tB + tI * duda[0]; } /* * (non-Javadoc) * * @see gdsc.smlm.function.gaussian.erf.ErfGaussian2DFunction#eval(int, double[], double[]) */ public double eval(final int i, final double[] duda, final double[] d2uda2) { // Unpack the predictor into the dimensions final int y = i / maxx; final int x = i % maxx; // Return in order of Gaussian2DFunction.createGradientIndices(). // Use pre-computed gradients duda[0] = deltaEx[x] * deltaEy[y]; duda[1] = du_dtx[x] * deltaEy[y]; duda[2] = du_dty[y] * deltaEx[x]; duda[3] = du_dtsx[x] * deltaEy[y]; duda[4] = du_dtsy[y] * deltaEx[x]; d2uda2[0] = 0; d2uda2[1] = d2u_dtx2[x] * deltaEy[y]; d2uda2[2] = d2u_dty2[y] * deltaEx[x]; d2uda2[3] = d2u_dtsx2[x] * deltaEy[y]; d2uda2[4] = d2u_dtsy2[y] * deltaEx[x]; return tB + tI * duda[0]; } @Override public boolean evaluatesBackground() { return false; } @Override public boolean evaluatesSignal() { return true; } @Override public boolean evaluatesShape() { return false; } @Override public boolean evaluatesPosition() { return true; } @Override public boolean evaluatesSD0() { return true; } @Override public boolean evaluatesSD1() { return true; } @Override public int getParametersPerPeak() { return 5; } /* * (non-Javadoc) * * @see gdsc.fitting.function.NonLinearFunction#gradientIndices() */ public int[] gradientIndices() { return gradientIndices; } /* * (non-Javadoc) * * @see gdsc.smlm.function.GradientFunction#getNumberOfGradients() */ public int getNumberOfGradients() { return 5; } /* * (non-Javadoc) * * @see gdsc.smlm.function.GradientFunction#forEach(gdsc.smlm.function.GradientFunction.ValueProcedure) */ public void forEach(ValueProcedure procedure) { if (tB == 0) { // Specialised implementation without a background. // (This function is likely to be used to compute the Gaussian integral // without a background.) for (int y = 0; y < maxy; y++) { final double tI_deltaEy = tI * deltaEy[y]; for (int x = 0; x < maxx; x++) { procedure.execute(tI_deltaEy * deltaEx[x]); } } } else { super.forEach(procedure); } } /* * (non-Javadoc) * * @see gdsc.smlm.function.GradientFunction#forEach(gdsc.smlm.function.GradientFunction.Gradient1Procedure) */ public void forEach(Gradient1Procedure procedure) { final double[] duda = new double[getNumberOfGradients()]; for (int y = 0; y < maxy; y++) { final double du_dty = this.du_dty[y]; final double deltaEy = this.deltaEy[y]; final double du_dtsy = this.du_dtsy[y]; for (int x = 0; x < maxx; x++) { duda[0] = deltaEx[x] * deltaEy; duda[1] = du_dtx[x] * deltaEy; duda[2] = du_dty * deltaEx[x]; duda[3] = du_dtsx[x] * deltaEy; duda[4] = du_dtsy * deltaEx[x]; procedure.execute(tB + tI * duda[0], duda); } } } /* * (non-Javadoc) * * @see gdsc.smlm.function.Gradient2Function#forEach(gdsc.smlm.function.Gradient2Procedure) */ public void forEach(Gradient2Procedure procedure) { final double[] duda = new double[getNumberOfGradients()]; final double[] d2uda2 = new double[getNumberOfGradients()]; for (int y = 0; y < maxy; y++) { final double du_dty = this.du_dty[y]; final double deltaEy = this.deltaEy[y]; final double du_dtsy = this.du_dtsy[y]; final double d2u_dty2 = this.d2u_dty2[y]; final double d2u_dtsy2 = this.d2u_dtsy2[y]; for (int x = 0; x < maxx; x++) { duda[0] = deltaEx[x] * deltaEy; duda[1] = du_dtx[x] * deltaEy; duda[2] = du_dty * deltaEx[x]; duda[3] = du_dtsx[x] * deltaEy; duda[4] = du_dtsy * deltaEx[x]; d2uda2[1] = d2u_dtx2[x] * deltaEy; d2uda2[2] = d2u_dty2 * deltaEx[x]; d2uda2[3] = d2u_dtsx2[x] * deltaEy; d2uda2[4] = d2u_dtsy2 * deltaEx[x]; procedure.execute(tB + tI * duda[0], duda, d2uda2); } } } }