package gdsc.smlm.fitting.nonlinear.gradient; import gdsc.smlm.function.Gradient1Function; /*----------------------------------------------------------------------------- * GDSC SMLM Software * * Copyright (C) 2017 Alex Herbert * Genome Damage and Stability Centre * University of Sussex, UK * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. *---------------------------------------------------------------------------*/ /** * Calculates the Hessian matrix (the square matrix of second-order partial derivatives of a function) * and the scaled gradient vector of the function's partial first derivatives with respect to the parameters. * This is used within the Levenberg-Marquardt method to fit a nonlinear model with coefficients (a) for a * set of data points (x, y). * <p> * Note that the Hessian matrix is scaled by 1/2 and the gradient vector is scaled by -1/2 for convenience in solving * the non-linear model. See Numerical Recipes in C++, 2nd Ed. Equation 15.5.8 for Nonlinear Models. */ public class LSQLVMGradientProcedure6 extends LSQLVMGradientProcedure { /** * @param y * Data to fit * @param func * Gradient function */ public LSQLVMGradientProcedure6(final double[] y, final Gradient1Function func) { super(y, func); if (n != 6) throw new IllegalArgumentException("Function must compute 6 gradients"); } /** * @param y * Data to fit * @param b * Baseline pre-computed y-values * @param func * Gradient function */ public LSQLVMGradientProcedure6(final double[] y, final double[] b, final Gradient1Function func) { super(y, b, func); if (n != 6) throw new IllegalArgumentException("Function must compute 6 gradients"); } /* * (non-Javadoc) * * @see gdsc.smlm.function.Gradient1Procedure#execute(double, double[]) */ public void execute(double value, double[] dy_da) { final double dy = y[++yi] - value; alpha[0] += dy_da[0] * dy_da[0]; alpha[1] += dy_da[1] * dy_da[0]; alpha[2] += dy_da[1] * dy_da[1]; alpha[3] += dy_da[2] * dy_da[0]; alpha[4] += dy_da[2] * dy_da[1]; alpha[5] += dy_da[2] * dy_da[2]; alpha[6] += dy_da[3] * dy_da[0]; alpha[7] += dy_da[3] * dy_da[1]; alpha[8] += dy_da[3] * dy_da[2]; alpha[9] += dy_da[3] * dy_da[3]; alpha[10] += dy_da[4] * dy_da[0]; alpha[11] += dy_da[4] * dy_da[1]; alpha[12] += dy_da[4] * dy_da[2]; alpha[13] += dy_da[4] * dy_da[3]; alpha[14] += dy_da[4] * dy_da[4]; alpha[15] += dy_da[5] * dy_da[0]; alpha[16] += dy_da[5] * dy_da[1]; alpha[17] += dy_da[5] * dy_da[2]; alpha[18] += dy_da[5] * dy_da[3]; alpha[19] += dy_da[5] * dy_da[4]; alpha[20] += dy_da[5] * dy_da[5]; beta[0] += dy_da[0] * dy; beta[1] += dy_da[1] * dy; beta[2] += dy_da[2] * dy; beta[3] += dy_da[3] * dy; beta[4] += dy_da[4] * dy; beta[5] += dy_da[5] * dy; this.value += dy * dy; } @Override protected void initialiseGradient() { GradientProcedureHelper.initialiseWorkingMatrix6(alpha); beta[0] = 0; beta[1] = 0; beta[2] = 0; beta[3] = 0; beta[4] = 0; beta[5] = 0; } @Override public void getAlphaMatrix(double[][] alpha) { GradientProcedureHelper.getMatrix6(this.alpha, alpha); } @Override public void getAlphaLinear(double[] alpha) { GradientProcedureHelper.getMatrix6(this.alpha, alpha); } }