package gdsc.smlm.function.gaussian.erf; import gdsc.smlm.function.Gradient1Procedure; import gdsc.smlm.function.Gradient2Procedure; import gdsc.smlm.function.gaussian.Gaussian2DFunction; /*----------------------------------------------------------------------------- * GDSC SMLM Software * * Copyright (C) 2017 Alex Herbert * Genome Damage and Stability Centre * University of Sussex, UK * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. *---------------------------------------------------------------------------*/ /** * Evaluates a 2-dimensional Gaussian function for a single peak. */ public class MultiCircularErfGaussian2DFunction extends MultiFreeCircularErfGaussian2DFunction { /** * Constructor. * * @param nPeaks * The number of peaks * @param maxx * The maximum x value of the 2-dimensional data (used to unpack a linear index into coordinates) * @param maxy * The maximum y value of the 2-dimensional data (used to unpack a linear index into coordinates) */ public MultiCircularErfGaussian2DFunction(int nPeaks, int maxx, int maxy) { super(nPeaks, maxx, maxy); } @Override protected int[] createGradientIndices() { return replicateGradientIndices(SingleCircularErfGaussian2DFunction.gradientIndices); } @Override public ErfGaussian2DFunction copy() { return new MultiCircularErfGaussian2DFunction(nPeaks, maxx, maxy); } public void initialise0(double[] a) { tB = a[Gaussian2DFunction.BACKGROUND]; for (int n = 0, i = 0; n < nPeaks; n++, i += 6) { tI[n] = a[i + Gaussian2DFunction.SIGNAL]; // Pre-compute the offset by 0.5 final double tx = a[i + Gaussian2DFunction.X_POSITION] + 0.5; final double ty = a[i + Gaussian2DFunction.Y_POSITION] + 0.5; final double s = a[i + Gaussian2DFunction.X_SD]; final double one_sSqrt2 = ONE_OVER_ROOT2 / s; createDeltaETable(n, maxx, one_sSqrt2, deltaEx, tx); createDeltaETable(n, maxy, one_sSqrt2, deltaEy, ty); } } public void initialise1(double[] a) { create1Arrays(); tB = a[Gaussian2DFunction.BACKGROUND]; for (int n = 0, i = 0; n < nPeaks; n++, i += 6) { tI[n] = a[i + Gaussian2DFunction.SIGNAL]; // Pre-compute the offset by 0.5 final double tx = a[i + Gaussian2DFunction.X_POSITION] + 0.5; final double ty = a[i + Gaussian2DFunction.Y_POSITION] + 0.5; final double s = a[i + Gaussian2DFunction.X_SD]; // We can pre-compute part of the derivatives for position and sd in arrays // since the Gaussian is XY separable final double one_sSqrt2 = ONE_OVER_ROOT2 / s; final double one_2ss = 0.5 / (s * s); final double I_sSqrt2pi = tI[n] * ONE_OVER_ROOT2PI / s; final double I_ssSqrt2pi = tI[n] * ONE_OVER_ROOT2PI / (s * s); // We can pre-compute part of the derivatives for position and sd in arrays // since the Gaussian is XY separable createFirstOrderTables(n, maxx, one_sSqrt2, one_2ss, I_sSqrt2pi, I_ssSqrt2pi, deltaEx, du_dtx, du_dtsx, tx); createFirstOrderTables(n, maxy, one_sSqrt2, one_2ss, I_sSqrt2pi, I_ssSqrt2pi, deltaEy, du_dty, du_dtsy, ty); } } public void initialise2(double[] a) { create2Arrays(); tB = a[Gaussian2DFunction.BACKGROUND]; for (int n = 0, i = 0; n < nPeaks; n++, i += 6) { tI[n] = a[i + Gaussian2DFunction.SIGNAL]; // Pre-compute the offset by 0.5 final double tx = a[i + Gaussian2DFunction.X_POSITION] + 0.5; final double ty = a[i + Gaussian2DFunction.Y_POSITION] + 0.5; final double s = a[i + Gaussian2DFunction.X_SD]; // We can pre-compute part of the derivatives for position and sd in arrays // since the Gaussian is XY separable final double one_sSqrt2pi = ONE_OVER_ROOT2PI / s; final double ss = s * s; final double one_sSqrt2 = ONE_OVER_ROOT2 / s; final double one_2ss = 0.5 / ss; final double I_sSqrt2pi = tI[n] * ONE_OVER_ROOT2PI / s; final double I_ssSqrt2pi = tI[n] * ONE_OVER_ROOT2PI / ss; final double I_sssSqrt2pi = I_sSqrt2pi / ss; final double one_sssSqrt2pi = one_sSqrt2pi / ss; final double one_sssssSqrt2pi = one_sssSqrt2pi / ss; // We can pre-compute part of the derivatives for position and sd in arrays // since the Gaussian is XY separable createSecondOrderTables(n, maxx, tI[n], one_sSqrt2, one_2ss, I_sSqrt2pi, I_ssSqrt2pi, I_sssSqrt2pi, ss, one_sssSqrt2pi, one_sssssSqrt2pi, deltaEx, du_dtx, du_dtsx, d2u_dtx2, d2u_dtsx2, tx); createSecondOrderTables(n, maxy, tI[n], one_sSqrt2, one_2ss, I_sSqrt2pi, I_ssSqrt2pi, I_sssSqrt2pi, ss, one_sssSqrt2pi, one_sssssSqrt2pi, deltaEy, du_dty, du_dtsy, d2u_dty2, d2u_dtsy2, ty); } } /** * Evaluates an 2-dimensional Gaussian function for a single peak. * * @param i * Input predictor * @param duda * Partial gradient of function with respect to each coefficient * @return The predicted value * * @see gdsc.smlm.function.NonLinearFunction#eval(int, double[]) */ public double eval(final int i, final double[] duda) { // Unpack the predictor into the dimensions int yy = i / maxx; int xx = i % maxx; // Return in order of Gaussian2DFunction.createGradientIndices(). // Use pre-computed gradients duda[0] = 1.0; double I = tB; for (int n = 0, a = 1; n < nPeaks; n++, xx += maxx, yy += maxy) { duda[a] = deltaEx[xx] * deltaEy[yy]; I += tI[n] * duda[a++]; duda[a++] = du_dtx[xx] * deltaEy[yy]; duda[a++] = du_dty[yy] * deltaEx[xx]; duda[a++] = du_dtsx[xx] * deltaEy[yy] + du_dtsy[yy] * deltaEx[xx]; } return I; } /** * Evaluates an 2-dimensional Gaussian function for a single peak. * * @param i * Input predictor * @param duda * Partial first gradient of function with respect to each coefficient * @param d2uda2 * Partial second gradient of function with respect to each coefficient * @return The predicted value */ public double eval(final int i, final double[] duda, final double[] d2uda2) { // Unpack the predictor into the dimensions int yy = i / maxx; int xx = i % maxx; // Return in order of Gaussian2DFunction.createGradientIndices(). // Use pre-computed gradients duda[0] = 1.0; d2uda2[0] = 0; double I = tB; for (int n = 0, a = 1; n < nPeaks; n++, xx += maxx, yy += maxy) { duda[a] = deltaEx[xx] * deltaEy[yy]; I += tI[n] * duda[a]; d2uda2[a++] = 0; duda[a] = du_dtx[xx] * deltaEy[yy]; d2uda2[a++] = d2u_dtx2[xx] * deltaEy[yy]; duda[a] = du_dty[yy] * deltaEx[xx]; d2uda2[a++] = d2u_dty2[yy] * deltaEx[xx]; duda[a] = du_dtsx[xx] * deltaEy[yy] + du_dtsy[yy] * deltaEx[xx]; //@formatter:off d2uda2[a++] = d2u_dtsx2[xx] * deltaEy[yy] + d2u_dtsy2[yy] * deltaEx[xx] + 2 * du_dtsx[xx] * du_dtsy[yy] / tI[n]; //@formatter:on } return I; } @Override public boolean evaluatesBackground() { return true; } @Override public boolean evaluatesSignal() { return true; } @Override public boolean evaluatesShape() { return false; } @Override public boolean evaluatesPosition() { return true; } @Override public boolean evaluatesSD0() { return true; } @Override public boolean evaluatesSD1() { return false; } @Override public int getParametersPerPeak() { return 4; } /* * (non-Javadoc) * * @see gdsc.smlm.function.GradientFunction#forEach(gdsc.smlm.function.GradientFunction.Gradient1Procedure) */ public void forEach(Gradient1Procedure procedure) { final double[] duda = new double[getNumberOfGradients()]; duda[0] = 1.0; for (int y = 0; y < maxy; y++) { for (int x = 0; x < maxx; x++) { double I = tB; for (int n = 0, xx = x, yy = y, a = 1; n < nPeaks; n++, xx += maxx, yy += maxy) { duda[a] = deltaEx[xx] * deltaEy[yy]; I += tI[n] * duda[a++]; duda[a++] = du_dtx[xx] * deltaEy[yy]; duda[a++] = du_dty[yy] * deltaEx[xx]; duda[a++] = du_dtsx[xx] * deltaEy[yy] + du_dtsy[yy] * deltaEx[xx]; } procedure.execute(I, duda); } } } /* * (non-Javadoc) * * @see gdsc.smlm.function.GradientFunction#forEach(gdsc.smlm.function.GradientFunction.Gradient2Procedure) */ public void forEach(Gradient2Procedure procedure) { final double[] duda = new double[getNumberOfGradients()]; final double[] d2uda2 = new double[getNumberOfGradients()]; final double[] two_du_dtsy_tI = new double[nPeaks]; duda[0] = 1.0; for (int y = 0; y < maxy; y++) { for (int n = 0, yy = y; n < nPeaks; n++, yy += maxy) two_du_dtsy_tI[n] = 2 * this.du_dtsy[yy] / tI[n]; for (int x = 0; x < maxx; x++) { double I = tB; for (int n = 0, xx = x, yy = y, a = 1; n < nPeaks; n++, xx += maxx, yy += maxy) { duda[a] = deltaEx[xx] * deltaEy[yy]; I += tI[n] * duda[a++]; duda[a] = du_dtx[xx] * deltaEy[yy]; d2uda2[a++] = d2u_dtx2[xx] * deltaEy[yy]; duda[a] = du_dty[yy] * deltaEx[xx]; d2uda2[a++] = d2u_dty2[yy] * deltaEx[xx]; duda[a] = du_dtsx[xx] * deltaEy[yy] + du_dtsy[yy] * deltaEx[xx]; //@formatter:off d2uda2[a++] = d2u_dtsx2[xx] * deltaEy[yy] + d2u_dtsy2[yy] * deltaEx[xx] + du_dtsx[xx] * two_du_dtsy_tI[n]; //@formatter:on } procedure.execute(I, duda, d2uda2); } } } }