package gdsc.smlm.function.gaussian; import org.apache.commons.math3.util.FastMath; /*----------------------------------------------------------------------------- * GDSC SMLM Software * * Copyright (C) 2013 Alex Herbert * Genome Damage and Stability Centre * University of Sussex, UK * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. *---------------------------------------------------------------------------*/ /** * Evaluates an 2-dimensional Gaussian function for a configured number of peaks. * <p> * The single parameter x in the {@link #eval(int, double[])} function is assumed to be a linear index into * 2-dimensional * data. The dimensions of the data must be specified to allow unpacking to coordinates. * <p> * Data should be packed in descending dimension order, e.g. Y,X : Index for [x,y] = MaxX*y + x. */ public class CircularGaussian2DFunction extends MultiPeakGaussian2DFunction { protected static final int PARAMETERS_PER_PEAK = 4; protected final double[][] peakFactors; protected double[] a; /** * Constructor * * @param npeaks * The number of peaks * @param maxx * The maximum x value of the 2-dimensional data (used to unpack a linear index into coordinates) * @param maxy * The maximum y value of the 2-dimensional data (used to unpack a linear index into coordinates) */ public CircularGaussian2DFunction(int npeaks, int maxx, int maxy) { super(npeaks, maxx, maxy); peakFactors = new double[npeaks][5]; } /* * (non-Javadoc) * * @see gdsc.smlm.function.gaussian.Gaussian2DFunction#copy() */ @Override public Gaussian2DFunction copy() { return new CircularGaussian2DFunction(npeaks, maxx, maxy); } protected static final int N = 0; protected static final int HEIGHT = 1; protected static final int AA = 2; protected static final int AA2 = 3; protected static final int AX = 4; /* * (non-Javadoc) * * @see gdsc.fitting.function.NonLinearFunction#initialise(double[]) */ public void initialise(double[] a) { this.a = a; // Precalculate multiplication factors for (int j = 0; j < npeaks; j++) { final double sx = a[j * 6 + X_SD]; final double sx2 = sx * sx; peakFactors[j][N] = ONE_OVER_TWO_PI / sx2; peakFactors[j][HEIGHT] = a[j * 6 + SIGNAL] * peakFactors[j][N]; // All prefactors are negated since the Gaussian uses the exponential to the negative: // (A/2*pi*sx*sy) * exp( -( a(x-x0)^2 + 2b(x-x0)(y-y0) + c(y-y0)^2 ) ) peakFactors[j][AA] = -0.5 / sx2; peakFactors[j][AA2] = -2.0 * peakFactors[j][AA]; // For the x-width gradient peakFactors[j][AX] = -2 / sx; } } /** * Produce an output predicted value for a given set of input * predictors (x) and coefficients (a). * <p> * Evaluates an 2-dimensional elliptical Gaussian function for a single peak. * <p> * The first coefficient is the Gaussian background level (B). The coefficients are then packed for each peak: * Amplitude; Angle; position[N]; sd[N]. Amplitude (A) is the volume of the Gaussian. Angle (r) is the rotation * angle of the ellipse. Position (x,y) is the position of the Gaussian in each of the N-dimensions. SD (sx,sy) is * the standard deviation in each of the N-dimensions. * <p> * The equation per peak is:<br/> * y_peak = A/(2*pi*sx*sy) * exp( -( a(x-x0)^2 + c(y-y0)^2 ) )<br/> * Where: <br/> * a = 1/(2*sx^2) <br/> * c = 1/(2*sy^2) * * @param x * Input predictor * @param dyda * Partial gradient of function with respect to each coefficient * @return The predicted value * * @see gdsc.smlm.function.NonLinearFunction#eval(int, double[]) */ public double eval(final int x, final double[] dyda) { // Track the position of the parameters int apos = 0; int dydapos = 0; // First parameter is the background level double y_fit = a[BACKGROUND]; dyda[dydapos++] = 1.0; // Gradient for a constant background is 1 // Unpack the predictor into the dimensions final int x1 = x / maxx; final int x0 = x % maxx; for (int j = 0; j < npeaks; j++) { y_fit += gaussian(x0, x1, dyda, apos, dydapos, peakFactors[j]); apos += 6; dydapos += PARAMETERS_PER_PEAK; } return y_fit; } protected double gaussian(final int x0, final int x1, final double[] dy_da, final int apos, final int dydapos, final double[] factors) { final double dx = x0 - a[apos + X_POSITION]; final double dy = x1 - a[apos + Y_POSITION]; // Calculate gradients final double aadx2dy2 = factors[AA] * (dx * dx + dy * dy); final double exp = FastMath.exp(aadx2dy2); dy_da[dydapos] = factors[N] * exp; final double y = factors[HEIGHT] * exp; final double yaa2 = y * factors[AA2]; dy_da[dydapos + 1] = yaa2 * dx; dy_da[dydapos + 2] = yaa2 * dy; dy_da[dydapos + 3] = factors[AX] * y * (1 + aadx2dy2); return y; } /* * (non-Javadoc) * * @see gdsc.fitting.function.NonLinearFunction#eval(int) */ public double eval(final int x) { // Track the position of the parameters int apos = 0; // First parameter is the background level double y_fit = a[BACKGROUND]; // Unpack the predictor into the dimensions final int x1 = x / maxx; final int x0 = x % maxx; for (int j = 0; j < npeaks; j++, apos += 6) { y_fit += gaussian(x0, x1, apos, peakFactors[j]); } return y_fit; } protected double gaussian(final int x0, final int x1, final int apos, final double[] factors) { final double dx = x0 - a[apos + X_POSITION]; final double dy = x1 - a[apos + Y_POSITION]; return factors[HEIGHT] * FastMath.exp(factors[AA] * (dx * dx + dy * dy)); } @Override public boolean evaluatesBackground() { return true; } @Override public boolean evaluatesSignal() { return true; } @Override public boolean evaluatesShape() { return false; } @Override public boolean evaluatesPosition() { return true; } @Override public boolean evaluatesSD0() { return true; } @Override public boolean evaluatesSD1() { return false; } @Override public int getParametersPerPeak() { return PARAMETERS_PER_PEAK; } }