package gdsc.smlm.fitting.nonlinear.gradient; import gdsc.smlm.function.Gradient1Function; /*----------------------------------------------------------------------------- * GDSC SMLM Software * * Copyright (C) 2017 Alex Herbert * Genome Damage and Stability Centre * University of Sussex, UK * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. *---------------------------------------------------------------------------*/ /** * Calculates the Hessian matrix (the square matrix of second-order partial derivatives of a function) * and the scaled gradient vector of the function's partial first derivatives with respect to the parameters. * This is used within the Levenberg-Marquardt method to fit a nonlinear model with coefficients (a) for a * set of data points (x, y). * <p> * Note that the Hessian matrix is scaled by 1/2 and the gradient vector is scaled by -1/2 for convenience in solving * the non-linear model. See Numerical Recipes in C++, 2nd Ed. Equation 15.5.8 for Nonlinear Models. */ public class LSQLVMGradientProcedureMatrix extends BaseLSQLVMGradientProcedure { /** * The scaled Hessian curvature matrix (size n*n) */ public final double[][] alpha; /** * @param y * Data to fit * @param b * Baseline pre-computed y-values * @param func * Gradient function */ public LSQLVMGradientProcedureMatrix(final double[] y, final double[] b, final Gradient1Function func) { super(y, b, func); alpha = new double[n][n]; } /* * (non-Javadoc) * * @see gdsc.smlm.function.Gradient1Procedure#execute(double, double[]) */ public void execute(double value, double[] dy_da) { final double dy = y[++yi] - value; // Compute: // - the scaled Hessian matrix (the square matrix of second-order partial derivatives of a function; // that is, it describes the local curvature of a function of many variables.) // - the scaled gradient vector of the function's partial first derivatives with respect to the parameters for (int j = 0; j < n; j++) { final double wgt = dy_da[j]; for (int k = 0; k <= j; k++) alpha[j][k] += wgt * dy_da[k]; beta[j] += wgt * dy; } this.value += dy * dy; } protected void initialiseGradient() { for (int i = 0; i < n; i++) { beta[i] = 0; for (int j = 0; j <= i; j++) alpha[i][j] = 0; } } protected void finishGradient() { // Generate symmetric matrix for (int i = 0; i < n - 1; i++) for (int j = i + 1; j < n; j++) alpha[i][j] = alpha[j][i]; } protected boolean checkGradients() { for (int i = 0; i < n; i++) { if (Double.isNaN(beta[i])) return true; for (int j = 0; j <= i; j++) if (Double.isNaN(alpha[i][j])) return true; } return false; } @Override public double[][] getAlphaMatrix() { return alpha; } @Override public void getAlphaMatrix(double[][] alpha) { for (int i = 0; i < n; i++) System.arraycopy(this.alpha, 0, alpha, 0, n); } @Override public void getAlphaLinear(double[] alpha) { toLinear(this.alpha, alpha); } }