package gdsc.smlm.fitting.nonlinear.gradient; import gdsc.smlm.function.Gradient1Function; /*----------------------------------------------------------------------------- * GDSC SMLM Software * * Copyright (C) 2017 Alex Herbert * Genome Damage and Stability Centre * University of Sussex, UK * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. *---------------------------------------------------------------------------*/ /** * Calculates the scaled Hessian matrix (the square matrix of second-order partial derivatives of a function) * and the scaled gradient vector of the function's partial first derivatives with respect to the parameters. * This is used within the Levenberg-Marquardt method to fit a nonlinear model with coefficients (a) for a * set of data points (x, y). * <p> * This calculator computes a modified Chi-squared expression to perform Maximum Likelihood Estimation assuming Poisson * model. See Laurence & Chromy (2010) Efficient maximum likelihood estimator. Nature Methods 7, 338-339. The input data * must be Poisson distributed for this to be relevant. */ public class MLELVMGradientProcedure4 extends MLELVMGradientProcedure { /** * @param y * Data to fit (must be positive) * @param func * Gradient function */ public MLELVMGradientProcedure4(final double[] y, final Gradient1Function func) { super(y, func); if (n != 4) throw new IllegalArgumentException("Function must compute 4 gradients"); } /* * (non-Javadoc) * * @see gdsc.smlm.function.Gradient1Procedure#execute(double, double[]) */ public void execute(double fi, double[] dfi_da) { ++yi; if (fi > 0) { final double xi = y[yi]; // We assume y[i] is positive if (xi == 0) { value += fi; beta[0] -= dfi_da[0]; beta[1] -= dfi_da[1]; beta[2] -= dfi_da[2]; beta[3] -= dfi_da[3]; } else { value += (fi - xi - xi * Math.log(fi / xi)); final double xi_fi2 = xi / fi / fi; final double e = 1 - (xi / fi); beta[0] -= e * dfi_da[0]; beta[1] -= e * dfi_da[1]; beta[2] -= e * dfi_da[2]; beta[3] -= e * dfi_da[3]; alpha[0] += dfi_da[0] * xi_fi2 * dfi_da[0]; double w; w = dfi_da[1] * xi_fi2; alpha[1] += w * dfi_da[0]; alpha[2] += w * dfi_da[1]; w = dfi_da[2] * xi_fi2; alpha[3] += w * dfi_da[0]; alpha[4] += w * dfi_da[1]; alpha[5] += w * dfi_da[2]; w = dfi_da[3] * xi_fi2; alpha[6] += w * dfi_da[0]; alpha[7] += w * dfi_da[1]; alpha[8] += w * dfi_da[2]; alpha[9] += w * dfi_da[3]; } } } @Override protected void initialiseGradient() { GradientProcedureHelper.initialiseWorkingMatrix4(alpha); beta[0] = 0; beta[1] = 0; beta[2] = 0; beta[3] = 0; } @Override public void getAlphaMatrix(double[][] alpha) { GradientProcedureHelper.getMatrix4(this.alpha, alpha); } @Override public void getAlphaLinear(double[] alpha) { GradientProcedureHelper.getMatrix4(this.alpha, alpha); } }