package gdsc.smlm.fitting.nonlinear.gradient; import gdsc.smlm.function.Gradient1Function; /*----------------------------------------------------------------------------- * GDSC SMLM Software * * Copyright (C) 2017 Alex Herbert * Genome Damage and Stability Centre * University of Sussex, UK * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. *---------------------------------------------------------------------------*/ /** * Calculates the Hessian matrix (the square matrix of second-order partial derivatives of a function) * and the scaled gradient vector of the function's partial first derivatives with respect to the parameters. * This is used within the Levenberg-Marquardt method to fit a nonlinear model with coefficients (a) for a * set of data points (x, y). * <p> * Note that the Hessian matrix is scaled by 1/2 and the gradient vector is scaled by -1/2 for convenience in solving * the non-linear model. See Numerical Recipes in C++, 2nd Ed. Equation 15.5.8 for Nonlinear Models. */ public class LSQLVMGradientProcedureLinear extends BaseLSQLVMGradientProcedure { /** * The scaled Hessian curvature matrix (size n*n) */ public final double[] alpha; /** * @param y * Data to fit * @param b * Baseline pre-computed y-values * @param func * Gradient function */ public LSQLVMGradientProcedureLinear(final double[] y, final double[] b, final Gradient1Function func) { super(y, b, func); alpha = new double[n * n]; } /* * (non-Javadoc) * * @see gdsc.smlm.function.Gradient1Procedure#execute(double, double[]) */ public void execute(double value, double[] dy_da) { final double dy = y[++yi] - value; // Compute: // - the scaled Hessian matrix (the square matrix of second-order partial derivatives of a function; // that is, it describes the local curvature of a function of many variables.) // - the scaled gradient vector of the function's partial first derivatives with respect to the parameters for (int i = 0, index = 0; i < n; i++, index += i) { final double wgt = dy_da[i]; for (int k = i; k < n; k++) { //System.out.printf("alpha[%d] += dy_da[%d] * dy_da[%d];\n", index, i, k); alpha[index++] += wgt * dy_da[k]; } beta[i] += wgt * dy; } //if (true) throw new RuntimeException(); this.value += dy * dy; } protected void initialiseGradient() { for (int i = 0, index = 0; i < n; i++, index += i) { beta[i] = 0; for (int k = i; k < n; k++) { //System.out.printf("alpha[%d] = 0;\n", index); alpha[index++] = 0; } } //if (true) throw new RuntimeException(); } protected void finishGradient() { // Generate symmetric matrix // Adapted from org.ejml.alg.dense.misc.TransposeAlgs.square() for (int i = 0, index = 1; i < n; i++, index += i + 1) { for (int k = i + 1, indexOther = (i + 1) * n + i; k < n; k++, index++, indexOther += n) // for (int i = 0, index = 1, indexEnd = n; i < n; i++, index += i + 1, indexEnd += n) // { // for (int indexOther = (i + 1) * n + i; index < indexEnd; index++, indexOther += n) { //System.out.printf("alpha[%d] = alpha[%d];\n", indexOther, index); alpha[indexOther] = alpha[index]; } } //throw new RuntimeException(); } protected boolean checkGradients() { for (int i = 0, index = 0; i < n; i++, index += i) { if (Double.isNaN(beta[i])) return true; for (int k = i; k < n; k++) { if (Double.isNaN(alpha[index++])) return true; } } return false; } @Override public void getAlphaMatrix(double[][] alpha) { toMatrix(this.alpha, alpha); } @Override public double[] getAlphaLinear() { return alpha; } @Override public void getAlphaLinear(double[] alpha) { System.arraycopy(this.alpha, 0, alpha, 0, alpha.length); } }