/* * SonarQube Java * Copyright (C) 2012-2016 SonarSource SA * mailto:contact AT sonarsource DOT com * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 3 of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ package org.sonar.java.se; import com.google.common.base.Preconditions; import com.google.common.collect.ImmutableList; import com.google.common.collect.Lists; import org.sonar.java.collections.PCollections; import org.sonar.java.collections.PMap; import org.sonar.java.se.constraint.BooleanConstraint; import org.sonar.java.se.constraint.Constraint; import org.sonar.java.se.constraint.ConstraintManager; import org.sonar.java.se.constraint.ObjectConstraint; import org.sonar.java.se.symbolicvalues.BinaryRelation; import org.sonar.java.se.symbolicvalues.SymbolicValue; import org.sonar.plugins.java.api.semantic.Symbol; import org.sonar.plugins.java.api.tree.VariableTree; import javax.annotation.CheckForNull; import javax.annotation.Nullable; import java.util.ArrayList; import java.util.Collection; import java.util.Collections; import java.util.Deque; import java.util.HashMap; import java.util.LinkedList; import java.util.List; import java.util.Map; import java.util.Objects; import java.util.Set; import java.util.function.BiConsumer; public class ProgramState { public static class Pop { public final ProgramState state; public final List<SymbolicValue> values; public Pop(ProgramState programState, List<SymbolicValue> result) { state = programState; values = result; } } private int hashCode; private final int constraintSize; public static final ProgramState EMPTY_STATE = new ProgramState( PCollections.emptyMap(), PCollections.emptyMap(), PCollections.<SymbolicValue, Constraint>emptyMap() .put(SymbolicValue.NULL_LITERAL, ObjectConstraint.nullConstraint()) .put(SymbolicValue.TRUE_LITERAL, BooleanConstraint.TRUE) .put(SymbolicValue.FALSE_LITERAL, BooleanConstraint.FALSE), PCollections.emptyMap(), Lists.<SymbolicValue>newLinkedList(), null); private final PMap<ExplodedGraph.ProgramPoint, Integer> visitedPoints; @Nullable Symbol lastEvaluated; private final Deque<SymbolicValue> stack; private final PMap<SymbolicValue, Integer> references; private SymbolicValue exitSymbolicValue; final PMap<Symbol, SymbolicValue> values; final PMap<SymbolicValue, Constraint> constraints; private ProgramState(PMap<Symbol, SymbolicValue> values, PMap<SymbolicValue, Integer> references, PMap<SymbolicValue, Constraint> constraints, PMap<ExplodedGraph.ProgramPoint, Integer> visitedPoints, Deque<SymbolicValue> stack, SymbolicValue exitSymbolicValue) { this.values = values; this.references = references; this.constraints = constraints; this.visitedPoints = visitedPoints; this.stack = stack; this.exitSymbolicValue = exitSymbolicValue; constraintSize = 3; } private ProgramState(Symbol symbol, PMap<Symbol, SymbolicValue> values, PMap<SymbolicValue, Integer> references, PMap<SymbolicValue, Constraint> constraints, PMap<ExplodedGraph.ProgramPoint, Integer> visitedPoints, Deque<SymbolicValue> stack, SymbolicValue exitSymbolicValue) { this(values, references, constraints, visitedPoints, stack, exitSymbolicValue); lastEvaluated = symbol; } private ProgramState(ProgramState ps, Deque<SymbolicValue> newStack) { values = ps.values; references = ps.references; constraints = ps.constraints; constraintSize = ps.constraintSize; visitedPoints = ps.visitedPoints; exitSymbolicValue = ps.exitSymbolicValue; stack = newStack; } private ProgramState(ProgramState ps, PMap<SymbolicValue, Constraint> newConstraints) { values = ps.values; references = ps.references; constraints = newConstraints; constraintSize = ps.constraintSize + 1; visitedPoints = ps.visitedPoints; exitSymbolicValue = ps.exitSymbolicValue; this.stack = ps.stack; } ProgramState stackValue(SymbolicValue sv) { Deque<SymbolicValue> newStack = new LinkedList<>(stack); newStack.push(sv); return new ProgramState(this, newStack); } ProgramState clearStack() { return unstackValue(stack.size()).state; } public Pop unstackValue(int nbElements) { if (nbElements == 0) { return new Pop(this, Collections.<SymbolicValue>emptyList()); } Preconditions.checkArgument(stack.size() >= nbElements, nbElements); Deque<SymbolicValue> newStack = new LinkedList<>(stack); List<SymbolicValue> result = Lists.newArrayList(); for (int i = 0; i < nbElements; i++) { result.add(newStack.pop()); } return new Pop(new ProgramState(this, newStack), result); } public SymbolicValue peekValue() { return stack.peek(); } public List<SymbolicValue> peekValues(int n) { if (n > stack.size()) { throw new IllegalStateException("At least " + n + " values were expected on the stack!"); } return ImmutableList.copyOf(stack).subList(0, n); } int numberOfTimeVisited(ExplodedGraph.ProgramPoint programPoint) { Integer count = visitedPoints.get(programPoint); return count == null ? 0 : count; } @CheckForNull public Symbol getLastEvaluated() { return lastEvaluated; } @Override public boolean equals(Object o) { if (this == o) { return true; } if (o == null || getClass() != o.getClass()) { return false; } ProgramState that = (ProgramState) o; return Objects.equals(values, that.values) && Objects.equals(constraints, that.constraints) && Objects.equals(exitSymbolicValue, that.exitSymbolicValue) && Objects.equals(peekValue(), that.peekValue()); } @Override public int hashCode() { if (hashCode == 0) { hashCode = Objects.hash(values, constraints, peekValue()); } return hashCode; } @Override public String toString() { return "{" + values.toString() + "} {" + constraints.toString() + "}" + " { " + stack.toString() + " }"; } public ProgramState addConstraint(SymbolicValue symbolicValue, Constraint constraint) { PMap<SymbolicValue, Constraint> newConstraints = constraints.put(symbolicValue, constraint); if (newConstraints != constraints) { return new ProgramState(this, newConstraints); } return this; } ProgramState put(Symbol symbol, SymbolicValue value) { if (symbol.isUnknown() || isVolatileField(symbol)) { return this; } SymbolicValue oldValue = values.get(symbol); if (oldValue == null || oldValue != value) { PMap<SymbolicValue, Integer> newReferences = references; if (oldValue != null) { newReferences = decreaseReference(newReferences, oldValue); } newReferences = increaseReference(newReferences, value); PMap<Symbol, SymbolicValue> newValues = values.put(symbol, value); return new ProgramState(symbol, newValues, newReferences, constraints, visitedPoints, stack, exitSymbolicValue); } if(lastEvaluated == null) { lastEvaluated = symbol; } return this; } private static boolean isVolatileField(Symbol symbol) { return isField(symbol) && symbol.isVolatile(); } private static PMap<SymbolicValue, Integer> decreaseReference(PMap<SymbolicValue, Integer> givenReferences, SymbolicValue sv) { Integer value = givenReferences.get(sv); Preconditions.checkNotNull(value); return givenReferences.put(sv, value - 1); } private static PMap<SymbolicValue, Integer> increaseReference(PMap<SymbolicValue, Integer> givenReferences, SymbolicValue sv) { Integer value = givenReferences.get(sv); if (value == null) { return givenReferences.put(sv, 1); } else { return givenReferences.put(sv, value + 1); } } private static boolean isDisposable(SymbolicValue symbolicValue, @Nullable Object constraint) { return SymbolicValue.isDisposable(symbolicValue) && (constraint == null || !(constraint instanceof ObjectConstraint) || ((ObjectConstraint) constraint).isDisposable()); } private static boolean inStack(Deque<SymbolicValue> stack, SymbolicValue symbolicValue) { for (SymbolicValue value : stack) { if (value.equals(symbolicValue) || value.references(symbolicValue)) { return true; } } return false; } private static boolean isLocalVariable(Symbol symbol) { return symbol.isVariableSymbol() && symbol.owner().isMethodSymbol(); } public ProgramState cleanupDeadSymbols(Set<Symbol> liveVariables, Collection<SymbolicValue> protectedSymbolicValues) { class CleanAction implements BiConsumer<Symbol, SymbolicValue> { boolean newProgramState = false; PMap<Symbol, SymbolicValue> newValues = values; PMap<SymbolicValue, Integer> newReferences = references; PMap<SymbolicValue, Constraint> newConstraints = constraints; @Override public void accept(Symbol symbol, SymbolicValue symbolicValue) { if (isLocalVariable(symbol) && !liveVariables.contains(symbol) && !protectedSymbolicValues.contains(symbolicValue)) { newProgramState = true; newValues = newValues.remove(symbol); newReferences = decreaseReference(newReferences, symbolicValue); if (!isReachable(symbolicValue, newReferences) && isDisposable(symbolicValue, newConstraints.get(symbolicValue)) && !inStack(stack, symbolicValue)) { newConstraints = newConstraints.remove(symbolicValue); newReferences = newReferences.remove(symbolicValue); } } } } CleanAction cleanAction = new CleanAction(); values.forEach(cleanAction); return cleanAction.newProgramState ? new ProgramState(cleanAction.newValues, cleanAction.newReferences, cleanAction.newConstraints, visitedPoints, stack, exitSymbolicValue) : this; } public ProgramState cleanupConstraints() { class CleanAction implements BiConsumer<SymbolicValue, Constraint> { boolean newProgramState = false; PMap<SymbolicValue, Constraint> newConstraints = constraints; PMap<SymbolicValue, Integer> newReferences = references; @Override public void accept(SymbolicValue symbolicValue, Constraint constraint) { if (!isReachable(symbolicValue, newReferences) && isDisposable(symbolicValue, constraint) && !inStack(stack, symbolicValue)) { newProgramState = true; newConstraints = newConstraints.remove(symbolicValue); newReferences = newReferences.remove(symbolicValue); } } } CleanAction cleanAction = new CleanAction(); constraints.forEach(cleanAction); return cleanAction.newProgramState ? new ProgramState(values, cleanAction.newReferences, cleanAction.newConstraints, visitedPoints, stack, exitSymbolicValue) : this; } public ProgramState resetFieldValues(ConstraintManager constraintManager) { final List<VariableTree> variableTrees = new ArrayList<>(); values.forEach((symbol, symbolicValue) -> { if (isField(symbol)) { VariableTree variable = ((Symbol.VariableSymbol) symbol).declaration(); if (variable != null) { variableTrees.add(variable); } } }); if (variableTrees.isEmpty()) { return this; } PMap<Symbol, SymbolicValue> newValues = values; PMap<SymbolicValue, Integer> newReferences = references; for (VariableTree variableTree : variableTrees) { Symbol symbol = variableTree.symbol(); SymbolicValue oldValue = newValues.get(symbol); if (oldValue != null) { newReferences = decreaseReference(newReferences, oldValue); } SymbolicValue newValue = constraintManager.createSymbolicValue(variableTree); newValues = newValues.put(symbol, newValue); newReferences = increaseReference(newReferences, newValue); } return new ProgramState(newValues, newReferences, constraints, visitedPoints, stack, exitSymbolicValue); } public static boolean isField(Symbol symbol) { return symbol.isVariableSymbol() && !symbol.owner().isMethodSymbol(); } private static boolean isReachable(SymbolicValue symbolicValue, PMap<SymbolicValue, Integer> references) { Integer integer = references.get(symbolicValue); return integer != null && integer > 0; } public boolean canReach(SymbolicValue symbolicValue) { return isReachable(symbolicValue, references); } public ProgramState visitedPoint(ExplodedGraph.ProgramPoint programPoint, int nbOfVisit) { return new ProgramState(values, references, constraints, visitedPoints.put(programPoint, nbOfVisit), stack, exitSymbolicValue); } @CheckForNull public Constraint getConstraint(SymbolicValue sv) { return constraints.get(sv); } public int constraintsSize() { return constraintSize; } @CheckForNull public SymbolicValue getValue(Symbol symbol) { return values.get(symbol); } public Map<SymbolicValue, ObjectConstraint> getValuesWithConstraints(final Object state) { final Map<SymbolicValue, ObjectConstraint> result = new HashMap<>(); constraints.forEach((symbolicValue, valueConstraint) -> { if (valueConstraint instanceof ObjectConstraint) { ObjectConstraint constraint = (ObjectConstraint) valueConstraint; if (constraint.hasStatus(state)) { result.put(symbolicValue, constraint); } } }); return result; } public List<BinaryRelation> getKnownRelations() { final List<BinaryRelation> knownRelations = new ArrayList<>(); constraints.forEach((symbolicValue, constraint) -> { BinaryRelation relation = symbolicValue.binaryRelation(); if (relation != null) { if (BooleanConstraint.TRUE.equals(constraint)) { knownRelations.add(relation); } else if (BooleanConstraint.FALSE.equals(constraint)) { knownRelations.add(relation.inverse()); } } }); return knownRelations; } @CheckForNull public <S extends ObjectConstraint.Status> ObjectConstraint<S> getConstraintWithStatus(SymbolicValue value, S aState) { final Object constraint = getConstraint(value.wrappedValue()); if (constraint instanceof ObjectConstraint) { ObjectConstraint oConstraint = (ObjectConstraint) constraint; if (oConstraint.hasStatus(aState)) { return oConstraint; } } return null; } public void storeExitValue() { this.exitSymbolicValue = peekValue(); } @CheckForNull public SymbolicValue exitValue() { return this.exitSymbolicValue; } public boolean exitingOnRuntimeException() { return exitSymbolicValue instanceof SymbolicValue.ExceptionalSymbolicValue && ((SymbolicValue.ExceptionalSymbolicValue) exitSymbolicValue).exceptionType() == null; } }