/* * Copyright (C) 2006 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package android.graphics; import java.awt.Shape; import java.awt.geom.AffineTransform; import java.awt.geom.Ellipse2D; import java.awt.geom.GeneralPath; import java.awt.geom.PathIterator; import java.awt.geom.Rectangle2D; /** * The Path class encapsulates compound (multiple contour) geometric paths * consisting of straight line segments, quadratic curves, and cubic curves. * It can be drawn with canvas.drawPath(path, paint), either filled or stroked * (based on the paint's Style), or it can be used for clipping or to draw * text on a path. */ public class Path { private FillType mFillType = FillType.WINDING; private GeneralPath mPath = new GeneralPath(); private float mLastX = 0; private float mLastY = 0; //---------- Custom methods ---------- public Shape getAwtShape() { return mPath; } //---------- /** * Create an empty path */ public Path() { } /** * Create a new path, copying the contents from the src path. * * @param src The path to copy from when initializing the new path */ public Path(Path src) { mPath.append(src.mPath, false /* connect */); } /** * Clear any lines and curves from the path, making it empty. * This does NOT change the fill-type setting. */ public void reset() { mPath = new GeneralPath(); } /** * Rewinds the path: clears any lines and curves from the path but * keeps the internal data structure for faster reuse. */ public void rewind() { // FIXME throw new UnsupportedOperationException(); } /** Replace the contents of this with the contents of src. */ public void set(Path src) { mPath.append(src.mPath, false /* connect */); } /** Enum for the ways a path may be filled */ public enum FillType { // these must match the values in SkPath.h WINDING (GeneralPath.WIND_NON_ZERO, false), EVEN_ODD (GeneralPath.WIND_EVEN_ODD, false), INVERSE_WINDING (GeneralPath.WIND_NON_ZERO, true), INVERSE_EVEN_ODD(GeneralPath.WIND_EVEN_ODD, true); FillType(int rule, boolean inverse) { this.rule = rule; this.inverse = inverse; } final int rule; final boolean inverse; } /** * Return the path's fill type. This defines how "inside" is * computed. The default value is WINDING. * * @return the path's fill type */ public FillType getFillType() { return mFillType; } /** * Set the path's fill type. This defines how "inside" is computed. * * @param ft The new fill type for this path */ public void setFillType(FillType ft) { mFillType = ft; mPath.setWindingRule(ft.rule); } /** * Returns true if the filltype is one of the INVERSE variants * * @return true if the filltype is one of the INVERSE variants */ public boolean isInverseFillType() { return mFillType.inverse; } /** * Toggles the INVERSE state of the filltype */ public void toggleInverseFillType() { switch (mFillType) { case WINDING: mFillType = FillType.INVERSE_WINDING; break; case EVEN_ODD: mFillType = FillType.INVERSE_EVEN_ODD; break; case INVERSE_WINDING: mFillType = FillType.WINDING; break; case INVERSE_EVEN_ODD: mFillType = FillType.EVEN_ODD; break; } } /** * Returns true if the path is empty (contains no lines or curves) * * @return true if the path is empty (contains no lines or curves) */ public boolean isEmpty() { return mPath.getCurrentPoint() == null; } /** * Returns true if the path specifies a rectangle. If so, and if rect is * not null, set rect to the bounds of the path. If the path does not * specify a rectangle, return false and ignore rect. * * @param rect If not null, returns the bounds of the path if it specifies * a rectangle * @return true if the path specifies a rectangle */ public boolean isRect(RectF rect) { // FIXME throw new UnsupportedOperationException(); } /** * Compute the bounds of the path, and write the answer into bounds. If the * path contains 0 or 1 points, the bounds is set to (0,0,0,0) * * @param bounds Returns the computed bounds of the path * @param exact If true, return the exact (but slower) bounds, else return * just the bounds of all control points */ public void computeBounds(RectF bounds, boolean exact) { Rectangle2D rect = mPath.getBounds2D(); bounds.left = (float)rect.getMinX(); bounds.right = (float)rect.getMaxX(); bounds.top = (float)rect.getMinY(); bounds.bottom = (float)rect.getMaxY(); } /** * Hint to the path to prepare for adding more points. This can allow the * path to more efficiently allocate its storage. * * @param extraPtCount The number of extra points that may be added to this * path */ public void incReserve(int extraPtCount) { // pass } /** * Set the beginning of the next contour to the point (x,y). * * @param x The x-coordinate of the start of a new contour * @param y The y-coordinate of the start of a new contour */ public void moveTo(float x, float y) { mPath.moveTo(mLastX = x, mLastY = y); } /** * Set the beginning of the next contour relative to the last point on the * previous contour. If there is no previous contour, this is treated the * same as moveTo(). * * @param dx The amount to add to the x-coordinate of the end of the * previous contour, to specify the start of a new contour * @param dy The amount to add to the y-coordinate of the end of the * previous contour, to specify the start of a new contour */ public void rMoveTo(float dx, float dy) { dx += mLastX; dy += mLastY; mPath.moveTo(mLastX = dx, mLastY = dy); } /** * Add a line from the last point to the specified point (x,y). * If no moveTo() call has been made for this contour, the first point is * automatically set to (0,0). * * @param x The x-coordinate of the end of a line * @param y The y-coordinate of the end of a line */ public void lineTo(float x, float y) { mPath.lineTo(mLastX = x, mLastY = y); } /** * Same as lineTo, but the coordinates are considered relative to the last * point on this contour. If there is no previous point, then a moveTo(0,0) * is inserted automatically. * * @param dx The amount to add to the x-coordinate of the previous point on * this contour, to specify a line * @param dy The amount to add to the y-coordinate of the previous point on * this contour, to specify a line */ public void rLineTo(float dx, float dy) { if (isEmpty()) { mPath.moveTo(mLastX = 0, mLastY = 0); } dx += mLastX; dy += mLastY; mPath.lineTo(mLastX = dx, mLastY = dy); } /** * Add a quadratic bezier from the last point, approaching control point * (x1,y1), and ending at (x2,y2). If no moveTo() call has been made for * this contour, the first point is automatically set to (0,0). * * @param x1 The x-coordinate of the control point on a quadratic curve * @param y1 The y-coordinate of the control point on a quadratic curve * @param x2 The x-coordinate of the end point on a quadratic curve * @param y2 The y-coordinate of the end point on a quadratic curve */ public void quadTo(float x1, float y1, float x2, float y2) { mPath.quadTo(x1, y1, mLastX = x2, mLastY = y2); } /** * Same as quadTo, but the coordinates are considered relative to the last * point on this contour. If there is no previous point, then a moveTo(0,0) * is inserted automatically. * * @param dx1 The amount to add to the x-coordinate of the last point on * this contour, for the control point of a quadratic curve * @param dy1 The amount to add to the y-coordinate of the last point on * this contour, for the control point of a quadratic curve * @param dx2 The amount to add to the x-coordinate of the last point on * this contour, for the end point of a quadratic curve * @param dy2 The amount to add to the y-coordinate of the last point on * this contour, for the end point of a quadratic curve */ public void rQuadTo(float dx1, float dy1, float dx2, float dy2) { if (isEmpty()) { mPath.moveTo(mLastX = 0, mLastY = 0); } dx1 += mLastX; dy1 += mLastY; dx2 += mLastX; dy2 += mLastY; mPath.quadTo(dx1, dy1, mLastX = dx2, mLastY = dy2); } /** * Add a cubic bezier from the last point, approaching control points * (x1,y1) and (x2,y2), and ending at (x3,y3). If no moveTo() call has been * made for this contour, the first point is automatically set to (0,0). * * @param x1 The x-coordinate of the 1st control point on a cubic curve * @param y1 The y-coordinate of the 1st control point on a cubic curve * @param x2 The x-coordinate of the 2nd control point on a cubic curve * @param y2 The y-coordinate of the 2nd control point on a cubic curve * @param x3 The x-coordinate of the end point on a cubic curve * @param y3 The y-coordinate of the end point on a cubic curve */ public void cubicTo(float x1, float y1, float x2, float y2, float x3, float y3) { mPath.curveTo(x1, y1, x2, y2, mLastX = x3, mLastY = y3); } /** * Same as cubicTo, but the coordinates are considered relative to the * current point on this contour. If there is no previous point, then a * moveTo(0,0) is inserted automatically. */ public void rCubicTo(float dx1, float dy1, float dx2, float dy2, float dx3, float dy3) { if (isEmpty()) { mPath.moveTo(mLastX = 0, mLastY = 0); } dx1 += mLastX; dy1 += mLastY; dx2 += mLastX; dy2 += mLastY; dx3 += mLastX; dy3 += mLastY; mPath.curveTo(dx1, dy1, dx2, dy2, mLastX = dx3, mLastY = dy3); } /** * Append the specified arc to the path as a new contour. If the start of * the path is different from the path's current last point, then an * automatic lineTo() is added to connect the current contour to the * start of the arc. However, if the path is empty, then we call moveTo() * with the first point of the arc. The sweep angle is tread mod 360. * * @param oval The bounds of oval defining shape and size of the arc * @param startAngle Starting angle (in degrees) where the arc begins * @param sweepAngle Sweep angle (in degrees) measured clockwise, treated * mod 360. * @param forceMoveTo If true, always begin a new contour with the arc */ public void arcTo(RectF oval, float startAngle, float sweepAngle, boolean forceMoveTo) { throw new UnsupportedOperationException(); } /** * Append the specified arc to the path as a new contour. If the start of * the path is different from the path's current last point, then an * automatic lineTo() is added to connect the current contour to the * start of the arc. However, if the path is empty, then we call moveTo() * with the first point of the arc. * * @param oval The bounds of oval defining shape and size of the arc * @param startAngle Starting angle (in degrees) where the arc begins * @param sweepAngle Sweep angle (in degrees) measured clockwise */ public void arcTo(RectF oval, float startAngle, float sweepAngle) { throw new UnsupportedOperationException(); } /** * Close the current contour. If the current point is not equal to the * first point of the contour, a line segment is automatically added. */ public void close() { mPath.closePath(); } /** * Specifies how closed shapes (e.g. rects, ovals) are oriented when they * are added to a path. */ public enum Direction { /** clockwise */ CW (0), // must match enum in SkPath.h /** counter-clockwise */ CCW (1); // must match enum in SkPath.h Direction(int ni) { nativeInt = ni; } final int nativeInt; } /** * Add a closed rectangle contour to the path * * @param rect The rectangle to add as a closed contour to the path * @param dir The direction to wind the rectangle's contour */ public void addRect(RectF rect, Direction dir) { if (rect == null) { throw new NullPointerException("need rect parameter"); } addRect(rect.left, rect.top, rect.right, rect.bottom, dir); } /** * Add a closed rectangle contour to the path * * @param left The left side of a rectangle to add to the path * @param top The top of a rectangle to add to the path * @param right The right side of a rectangle to add to the path * @param bottom The bottom of a rectangle to add to the path * @param dir The direction to wind the rectangle's contour */ public void addRect(float left, float top, float right, float bottom, Direction dir) { moveTo(left, top); switch (dir) { case CW: lineTo(right, top); lineTo(right, bottom); lineTo(left, bottom); break; case CCW: lineTo(left, bottom); lineTo(right, bottom); lineTo(right, top); break; } close(); } /** * Add a closed oval contour to the path * * @param oval The bounds of the oval to add as a closed contour to the path * @param dir The direction to wind the oval's contour */ public void addOval(RectF oval, Direction dir) { if (oval == null) { throw new NullPointerException("need oval parameter"); } // FIXME Need to support direction Ellipse2D ovalShape = new Ellipse2D.Float(oval.left, oval.top, oval.width(), oval.height()); mPath.append(ovalShape, false /* connect */); } /** * Add a closed circle contour to the path * * @param x The x-coordinate of the center of a circle to add to the path * @param y The y-coordinate of the center of a circle to add to the path * @param radius The radius of a circle to add to the path * @param dir The direction to wind the circle's contour */ public void addCircle(float x, float y, float radius, Direction dir) { // FIXME throw new UnsupportedOperationException(); } /** * Add the specified arc to the path as a new contour. * * @param oval The bounds of oval defining the shape and size of the arc * @param startAngle Starting angle (in degrees) where the arc begins * @param sweepAngle Sweep angle (in degrees) measured clockwise */ public void addArc(RectF oval, float startAngle, float sweepAngle) { if (oval == null) { throw new NullPointerException("need oval parameter"); } // FIXME throw new UnsupportedOperationException(); } /** * Add a closed round-rectangle contour to the path * * @param rect The bounds of a round-rectangle to add to the path * @param rx The x-radius of the rounded corners on the round-rectangle * @param ry The y-radius of the rounded corners on the round-rectangle * @param dir The direction to wind the round-rectangle's contour */ public void addRoundRect(RectF rect, float rx, float ry, Direction dir) { if (rect == null) { throw new NullPointerException("need rect parameter"); } // FIXME throw new UnsupportedOperationException(); } /** * Add a closed round-rectangle contour to the path. Each corner receives * two radius values [X, Y]. The corners are ordered top-left, top-right, * bottom-right, bottom-left * * @param rect The bounds of a round-rectangle to add to the path * @param radii Array of 8 values, 4 pairs of [X,Y] radii * @param dir The direction to wind the round-rectangle's contour */ public void addRoundRect(RectF rect, float[] radii, Direction dir) { if (rect == null) { throw new NullPointerException("need rect parameter"); } if (radii.length < 8) { throw new ArrayIndexOutOfBoundsException("radii[] needs 8 values"); } // FIXME throw new UnsupportedOperationException(); } /** * Add a copy of src to the path, offset by (dx,dy) * * @param src The path to add as a new contour * @param dx The amount to translate the path in X as it is added */ public void addPath(Path src, float dx, float dy) { PathIterator iterator = src.mPath.getPathIterator(new AffineTransform(0, 0, dx, 0, 0, dy)); mPath.append(iterator, false /* connect */); } /** * Add a copy of src to the path * * @param src The path that is appended to the current path */ public void addPath(Path src) { addPath(src, 0, 0); } /** * Add a copy of src to the path, transformed by matrix * * @param src The path to add as a new contour */ public void addPath(Path src, Matrix matrix) { // FIXME throw new UnsupportedOperationException(); } /** * Offset the path by (dx,dy), returning true on success * * @param dx The amount in the X direction to offset the entire path * @param dy The amount in the Y direction to offset the entire path * @param dst The translated path is written here. If this is null, then * the original path is modified. */ public void offset(float dx, float dy, Path dst) { GeneralPath newPath = new GeneralPath(); PathIterator iterator = mPath.getPathIterator(new AffineTransform(0, 0, dx, 0, 0, dy)); newPath.append(iterator, false /* connect */); if (dst != null) { dst.mPath = newPath; } else { mPath = newPath; } } /** * Offset the path by (dx,dy), returning true on success * * @param dx The amount in the X direction to offset the entire path * @param dy The amount in the Y direction to offset the entire path */ public void offset(float dx, float dy) { offset(dx, dy, null /* dst */); } /** * Sets the last point of the path. * * @param dx The new X coordinate for the last point * @param dy The new Y coordinate for the last point */ public void setLastPoint(float dx, float dy) { mLastX = dx; mLastY = dy; } /** * Transform the points in this path by matrix, and write the answer * into dst. If dst is null, then the the original path is modified. * * @param matrix The matrix to apply to the path * @param dst The transformed path is written here. If dst is null, * then the the original path is modified */ public void transform(Matrix matrix, Path dst) { // FIXME throw new UnsupportedOperationException(); } /** * Transform the points in this path by matrix. * * @param matrix The matrix to apply to the path */ public void transform(Matrix matrix) { transform(matrix, null /* dst */); } }