/* * Copyright (C) 2006 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package android.os; import android.util.Log; import android.util.Printer; import java.lang.reflect.Modifier; /** * A Handler allows you to send and process {@link Message} and Runnable * objects associated with a thread's {@link MessageQueue}. Each Handler * instance is associated with a single thread and that thread's message * queue. When you create a new Handler, it is bound to the thread / * message queue of the thread that is creating it -- from that point on, * it will deliver messages and runnables to that message queue and execute * them as they come out of the message queue. * * <p>There are two main uses for a Handler: (1) to schedule messages and * runnables to be executed as some point in the future; and (2) to enqueue * an action to be performed on a different thread than your own. * * <p>Scheduling messages is accomplished with the * {@link #post}, {@link #postAtTime(Runnable, long)}, * {@link #postDelayed}, {@link #sendEmptyMessage}, * {@link #sendMessage}, {@link #sendMessageAtTime}, and * {@link #sendMessageDelayed} methods. The <em>post</em> versions allow * you to enqueue Runnable objects to be called by the message queue when * they are received; the <em>sendMessage</em> versions allow you to enqueue * a {@link Message} object containing a bundle of data that will be * processed by the Handler's {@link #handleMessage} method (requiring that * you implement a subclass of Handler). * * <p>When posting or sending to a Handler, you can either * allow the item to be processed as soon as the message queue is ready * to do so, or specify a delay before it gets processed or absolute time for * it to be processed. The latter two allow you to implement timeouts, * ticks, and other timing-based behavior. * * <p>When a * process is created for your application, its main thread is dedicated to * running a message queue that takes care of managing the top-level * application objects (activities, broadcast receivers, etc) and any windows * they create. You can create your own threads, and communicate back with * the main application thread through a Handler. This is done by calling * the same <em>post</em> or <em>sendMessage</em> methods as before, but from * your new thread. The given Runnable or Message will than be scheduled * in the Handler's message queue and processed when appropriate. */ public class Handler { /* * Set this flag to true to detect anonymous, local or member classes * that extend this Handler class and that are not static. These kind * of classes can potentially create leaks. */ private static final boolean FIND_POTENTIAL_LEAKS = false; private static final String TAG = "Handler"; /** * Callback interface you can use when instantiating a Handler to avoid * having to implement your own subclass of Handler. */ public interface Callback { public boolean handleMessage(Message msg); } /** * Subclasses must implement this to receive messages. */ public void handleMessage(Message msg) { } /** * Handle system messages here. */ public void dispatchMessage(Message msg) { if (msg.callback != null) { handleCallback(msg); } else { if (mCallback != null) { if (mCallback.handleMessage(msg)) { return; } } handleMessage(msg); } } /** * Default constructor associates this handler with the queue for the * current thread. * * If there isn't one, this handler won't be able to receive messages. */ public Handler() { if (FIND_POTENTIAL_LEAKS) { final Class<? extends Handler> klass = getClass(); if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) && (klass.getModifiers() & Modifier.STATIC) == 0) { Log.w(TAG, "The following Handler class should be static or leaks might occur: " + klass.getCanonicalName()); } } mLooper = Looper.myLooper(); if (mLooper == null) { throw new RuntimeException( "Can't create handler inside thread that has not called Looper.prepare()"); } mQueue = mLooper.mQueue; mCallback = null; } /** * Constructor associates this handler with the queue for the * current thread and takes a callback interface in which you can handle * messages. */ public Handler(Callback callback) { if (FIND_POTENTIAL_LEAKS) { final Class<? extends Handler> klass = getClass(); if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) && (klass.getModifiers() & Modifier.STATIC) == 0) { Log.w(TAG, "The following Handler class should be static or leaks might occur: " + klass.getCanonicalName()); } } mLooper = Looper.myLooper(); if (mLooper == null) { throw new RuntimeException( "Can't create handler inside thread that has not called Looper.prepare()"); } mQueue = mLooper.mQueue; mCallback = callback; } /** * Use the provided queue instead of the default one. */ public Handler(Looper looper) { mLooper = looper; mQueue = looper.mQueue; mCallback = null; } /** * Use the provided queue instead of the default one and take a callback * interface in which to handle messages. */ public Handler(Looper looper, Callback callback) { mLooper = looper; mQueue = looper.mQueue; mCallback = callback; } /** * Returns a new {@link android.os.Message Message} from the global message pool. More efficient than * creating and allocating new instances. The retrieved message has its handler set to this instance (Message.target == this). * If you don't want that facility, just call Message.obtain() instead. */ public final Message obtainMessage() { return Message.obtain(this); } /** * Same as {@link #obtainMessage()}, except that it also sets the what member of the returned Message. * * @param what Value to assign to the returned Message.what field. * @return A Message from the global message pool. */ public final Message obtainMessage(int what) { return Message.obtain(this, what); } /** * * Same as {@link #obtainMessage()}, except that it also sets the what and obj members * of the returned Message. * * @param what Value to assign to the returned Message.what field. * @param obj Value to assign to the returned Message.obj field. * @return A Message from the global message pool. */ public final Message obtainMessage(int what, Object obj) { return Message.obtain(this, what, obj); } /** * * Same as {@link #obtainMessage()}, except that it also sets the what, arg1 and arg2 members of the returned * Message. * @param what Value to assign to the returned Message.what field. * @param arg1 Value to assign to the returned Message.arg1 field. * @param arg2 Value to assign to the returned Message.arg2 field. * @return A Message from the global message pool. */ public final Message obtainMessage(int what, int arg1, int arg2) { return Message.obtain(this, what, arg1, arg2); } /** * * Same as {@link #obtainMessage()}, except that it also sets the what, obj, arg1,and arg2 values on the * returned Message. * @param what Value to assign to the returned Message.what field. * @param arg1 Value to assign to the returned Message.arg1 field. * @param arg2 Value to assign to the returned Message.arg2 field. * @param obj Value to assign to the returned Message.obj field. * @return A Message from the global message pool. */ public final Message obtainMessage(int what, int arg1, int arg2, Object obj) { return Message.obtain(this, what, arg1, arg2, obj); } /** * Causes the Runnable r to be added to the message queue. * The runnable will be run on the thread to which this handler is * attached. * * @param r The Runnable that will be executed. * * @return Returns true if the Runnable was successfully placed in to the * message queue. Returns false on failure, usually because the * looper processing the message queue is exiting. */ public final boolean post(Runnable r) { return sendMessageDelayed(getPostMessage(r), 0); } /** * Causes the Runnable r to be added to the message queue, to be run * at a specific time given by <var>uptimeMillis</var>. * <b>The time-base is {@link android.os.SystemClock#uptimeMillis}.</b> * The runnable will be run on the thread to which this handler is attached. * * @param r The Runnable that will be executed. * @param uptimeMillis The absolute time at which the callback should run, * using the {@link android.os.SystemClock#uptimeMillis} time-base. * * @return Returns true if the Runnable was successfully placed in to the * message queue. Returns false on failure, usually because the * looper processing the message queue is exiting. Note that a * result of true does not mean the Runnable will be processed -- if * the looper is quit before the delivery time of the message * occurs then the message will be dropped. */ public final boolean postAtTime(Runnable r, long uptimeMillis) { return sendMessageAtTime(getPostMessage(r), uptimeMillis); } /** * Causes the Runnable r to be added to the message queue, to be run * at a specific time given by <var>uptimeMillis</var>. * <b>The time-base is {@link android.os.SystemClock#uptimeMillis}.</b> * The runnable will be run on the thread to which this handler is attached. * * @param r The Runnable that will be executed. * @param uptimeMillis The absolute time at which the callback should run, * using the {@link android.os.SystemClock#uptimeMillis} time-base. * * @return Returns true if the Runnable was successfully placed in to the * message queue. Returns false on failure, usually because the * looper processing the message queue is exiting. Note that a * result of true does not mean the Runnable will be processed -- if * the looper is quit before the delivery time of the message * occurs then the message will be dropped. * * @see android.os.SystemClock#uptimeMillis */ public final boolean postAtTime(Runnable r, Object token, long uptimeMillis) { return sendMessageAtTime(getPostMessage(r, token), uptimeMillis); } /** * Causes the Runnable r to be added to the message queue, to be run * after the specified amount of time elapses. * The runnable will be run on the thread to which this handler * is attached. * * @param r The Runnable that will be executed. * @param delayMillis The delay (in milliseconds) until the Runnable * will be executed. * * @return Returns true if the Runnable was successfully placed in to the * message queue. Returns false on failure, usually because the * looper processing the message queue is exiting. Note that a * result of true does not mean the Runnable will be processed -- * if the looper is quit before the delivery time of the message * occurs then the message will be dropped. */ public final boolean postDelayed(Runnable r, long delayMillis) { return sendMessageDelayed(getPostMessage(r), delayMillis); } /** * Posts a message to an object that implements Runnable. * Causes the Runnable r to executed on the next iteration through the * message queue. The runnable will be run on the thread to which this * handler is attached. * <b>This method is only for use in very special circumstances -- it * can easily starve the message queue, cause ordering problems, or have * other unexpected side-effects.</b> * * @param r The Runnable that will be executed. * * @return Returns true if the message was successfully placed in to the * message queue. Returns false on failure, usually because the * looper processing the message queue is exiting. */ public final boolean postAtFrontOfQueue(Runnable r) { return sendMessageAtFrontOfQueue(getPostMessage(r)); } /** * Remove any pending posts of Runnable r that are in the message queue. */ public final void removeCallbacks(Runnable r) { mQueue.removeMessages(this, r, null); } /** * Remove any pending posts of Runnable <var>r</var> with Object * <var>token</var> that are in the message queue. */ public final void removeCallbacks(Runnable r, Object token) { mQueue.removeMessages(this, r, token); } /** * Pushes a message onto the end of the message queue after all pending messages * before the current time. It will be received in {@link #handleMessage}, * in the thread attached to this handler. * * @return Returns true if the message was successfully placed in to the * message queue. Returns false on failure, usually because the * looper processing the message queue is exiting. */ public final boolean sendMessage(Message msg) { return sendMessageDelayed(msg, 0); } /** * Sends a Message containing only the what value. * * @return Returns true if the message was successfully placed in to the * message queue. Returns false on failure, usually because the * looper processing the message queue is exiting. */ public final boolean sendEmptyMessage(int what) { return sendEmptyMessageDelayed(what, 0); } /** * Sends a Message containing only the what value, to be delivered * after the specified amount of time elapses. * @see #sendMessageDelayed(android.os.Message, long) * * @return Returns true if the message was successfully placed in to the * message queue. Returns false on failure, usually because the * looper processing the message queue is exiting. */ public final boolean sendEmptyMessageDelayed(int what, long delayMillis) { Message msg = Message.obtain(); msg.what = what; return sendMessageDelayed(msg, delayMillis); } /** * Sends a Message containing only the what value, to be delivered * at a specific time. * @see #sendMessageAtTime(android.os.Message, long) * * @return Returns true if the message was successfully placed in to the * message queue. Returns false on failure, usually because the * looper processing the message queue is exiting. */ public final boolean sendEmptyMessageAtTime(int what, long uptimeMillis) { Message msg = Message.obtain(); msg.what = what; return sendMessageAtTime(msg, uptimeMillis); } /** * Enqueue a message into the message queue after all pending messages * before (current time + delayMillis). You will receive it in * {@link #handleMessage}, in the thread attached to this handler. * * @return Returns true if the message was successfully placed in to the * message queue. Returns false on failure, usually because the * looper processing the message queue is exiting. Note that a * result of true does not mean the message will be processed -- if * the looper is quit before the delivery time of the message * occurs then the message will be dropped. */ public final boolean sendMessageDelayed(Message msg, long delayMillis) { if (delayMillis < 0) { delayMillis = 0; } return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis); } /** * Enqueue a message into the message queue after all pending messages * before the absolute time (in milliseconds) <var>uptimeMillis</var>. * <b>The time-base is {@link android.os.SystemClock#uptimeMillis}.</b> * You will receive it in {@link #handleMessage}, in the thread attached * to this handler. * * @param uptimeMillis The absolute time at which the message should be * delivered, using the * {@link android.os.SystemClock#uptimeMillis} time-base. * * @return Returns true if the message was successfully placed in to the * message queue. Returns false on failure, usually because the * looper processing the message queue is exiting. Note that a * result of true does not mean the message will be processed -- if * the looper is quit before the delivery time of the message * occurs then the message will be dropped. */ public boolean sendMessageAtTime(Message msg, long uptimeMillis) { boolean sent = false; MessageQueue queue = mQueue; if (queue != null) { msg.target = this; sent = queue.enqueueMessage(msg, uptimeMillis); } else { RuntimeException e = new RuntimeException( this + " sendMessageAtTime() called with no mQueue"); Log.w("Looper", e.getMessage(), e); } return sent; } /** * Enqueue a message at the front of the message queue, to be processed on * the next iteration of the message loop. You will receive it in * {@link #handleMessage}, in the thread attached to this handler. * <b>This method is only for use in very special circumstances -- it * can easily starve the message queue, cause ordering problems, or have * other unexpected side-effects.</b> * * @return Returns true if the message was successfully placed in to the * message queue. Returns false on failure, usually because the * looper processing the message queue is exiting. */ public final boolean sendMessageAtFrontOfQueue(Message msg) { boolean sent = false; MessageQueue queue = mQueue; if (queue != null) { msg.target = this; sent = queue.enqueueMessage(msg, 0); } else { RuntimeException e = new RuntimeException( this + " sendMessageAtTime() called with no mQueue"); Log.w("Looper", e.getMessage(), e); } return sent; } /** * Remove any pending posts of messages with code 'what' that are in the * message queue. */ public final void removeMessages(int what) { mQueue.removeMessages(this, what, null, true); } /** * Remove any pending posts of messages with code 'what' and whose obj is * 'object' that are in the message queue. */ public final void removeMessages(int what, Object object) { mQueue.removeMessages(this, what, object, true); } /** * Remove any pending posts of callbacks and sent messages whose * <var>obj</var> is <var>token</var>. */ public final void removeCallbacksAndMessages(Object token) { mQueue.removeCallbacksAndMessages(this, token); } /** * Check if there are any pending posts of messages with code 'what' in * the message queue. */ public final boolean hasMessages(int what) { return mQueue.removeMessages(this, what, null, false); } /** * Check if there are any pending posts of messages with code 'what' and * whose obj is 'object' in the message queue. */ public final boolean hasMessages(int what, Object object) { return mQueue.removeMessages(this, what, object, false); } // if we can get rid of this method, the handler need not remember its loop // we could instead export a getMessageQueue() method... public final Looper getLooper() { return mLooper; } public final void dump(Printer pw, String prefix) { pw.println(prefix + this + " @ " + SystemClock.uptimeMillis()); if (mLooper == null) { pw.println(prefix + "looper uninitialized"); } else { mLooper.dump(pw, prefix + " "); } } @Override public String toString() { return "Handler{" + Integer.toHexString(System.identityHashCode(this)) + "}"; } final IMessenger getIMessenger() { synchronized (mQueue) { if (mMessenger != null) { return mMessenger; } mMessenger = new MessengerImpl(); return mMessenger; } } private final class MessengerImpl extends IMessenger.Stub { public void send(Message msg) { Handler.this.sendMessage(msg); } } private final Message getPostMessage(Runnable r) { Message m = Message.obtain(); m.callback = r; return m; } private final Message getPostMessage(Runnable r, Object token) { Message m = Message.obtain(); m.obj = token; m.callback = r; return m; } private final void handleCallback(Message message) { message.callback.run(); } final MessageQueue mQueue; final Looper mLooper; final Callback mCallback; IMessenger mMessenger; }