/* * Copyright (C) 2006 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package android.graphics; /** * The Path class encapsulates compound (multiple contour) geometric paths * consisting of straight line segments, quadratic curves, and cubic curves. * It can be drawn with canvas.drawPath(path, paint), either filled or stroked * (based on the paint's Style), or it can be used for clipping or to draw * text on a path. */ public class Path { /** * Create an empty path */ public Path() { mNativePath = init1(); } /** * Create a new path, copying the contents from the src path. * * @param src The path to copy from when initializing the new path */ public Path(Path src) { int valNative = 0; if (src != null) { valNative = src.mNativePath; } mNativePath = init2(valNative); } /** * Clear any lines and curves from the path, making it empty. * This does NOT change the fill-type setting. */ public void reset() { native_reset(mNativePath); } /** * Rewinds the path: clears any lines and curves from the path but * keeps the internal data structure for faster reuse. */ public void rewind() { native_rewind(mNativePath); } /** Replace the contents of this with the contents of src. */ public void set(Path src) { if (this != src) { native_set(mNativePath, src.mNativePath); } } /** Enum for the ways a path may be filled */ public enum FillType { // these must match the values in SkPath.h WINDING (0), EVEN_ODD (1), INVERSE_WINDING (2), INVERSE_EVEN_ODD(3); FillType(int ni) { nativeInt = ni; } final int nativeInt; } // these must be in the same order as their native values private static final FillType[] sFillTypeArray = { FillType.WINDING, FillType.EVEN_ODD, FillType.INVERSE_WINDING, FillType.INVERSE_EVEN_ODD }; /** * Return the path's fill type. This defines how "inside" is * computed. The default value is WINDING. * * @return the path's fill type */ public FillType getFillType() { return sFillTypeArray[native_getFillType(mNativePath)]; } /** * Set the path's fill type. This defines how "inside" is computed. * * @param ft The new fill type for this path */ public void setFillType(FillType ft) { native_setFillType(mNativePath, ft.nativeInt); } /** * Returns true if the filltype is one of the INVERSE variants * * @return true if the filltype is one of the INVERSE variants */ public boolean isInverseFillType() { final int ft = native_getFillType(mNativePath); return (ft & 2) != 0; } /** * Toggles the INVERSE state of the filltype */ public void toggleInverseFillType() { int ft = native_getFillType(mNativePath); ft ^= 2; native_setFillType(mNativePath, ft); } /** * Returns true if the path is empty (contains no lines or curves) * * @return true if the path is empty (contains no lines or curves) */ public boolean isEmpty() { return native_isEmpty(mNativePath); } /** * Returns true if the path specifies a rectangle. If so, and if rect is * not null, set rect to the bounds of the path. If the path does not * specify a rectangle, return false and ignore rect. * * @param rect If not null, returns the bounds of the path if it specifies * a rectangle * @return true if the path specifies a rectangle */ public boolean isRect(RectF rect) { return native_isRect(mNativePath, rect); } /** * Compute the bounds of the path, and write the answer into bounds. If the * path contains 0 or 1 points, the bounds is set to (0,0,0,0) * * @param bounds Returns the computed bounds of the path * @param exact If true, return the exact (but slower) bounds, else return * just the bounds of all control points */ public void computeBounds(RectF bounds, boolean exact) { // 1-exact, 0-fast correspond to the values in SkPath.h native_computeBounds(mNativePath, bounds, exact ? 1 : 0); } /** * Hint to the path to prepare for adding more points. This can allow the * path to more efficiently allocate its storage. * * @param extraPtCount The number of extra points that may be added to this * path */ public void incReserve(int extraPtCount) { native_incReserve(mNativePath, extraPtCount); } /** * Set the beginning of the next contour to the point (x,y). * * @param x The x-coordinate of the start of a new contour * @param y The y-coordinate of the start of a new contour */ public void moveTo(float x, float y) { native_moveTo(mNativePath, x, y); } /** * Set the beginning of the next contour relative to the last point on the * previous contour. If there is no previous contour, this is treated the * same as moveTo(). * * @param dx The amount to add to the x-coordinate of the end of the * previous contour, to specify the start of a new contour * @param dy The amount to add to the y-coordinate of the end of the * previous contour, to specify the start of a new contour */ public void rMoveTo(float dx, float dy) { native_rMoveTo(mNativePath, dx, dy); } /** * Add a line from the last point to the specified point (x,y). * If no moveTo() call has been made for this contour, the first point is * automatically set to (0,0). * * @param x The x-coordinate of the end of a line * @param y The y-coordinate of the end of a line */ public void lineTo(float x, float y) { native_lineTo(mNativePath, x, y); } /** * Same as lineTo, but the coordinates are considered relative to the last * point on this contour. If there is no previous point, then a moveTo(0,0) * is inserted automatically. * * @param dx The amount to add to the x-coordinate of the previous point on * this contour, to specify a line * @param dy The amount to add to the y-coordinate of the previous point on * this contour, to specify a line */ public void rLineTo(float dx, float dy) { native_rLineTo(mNativePath, dx, dy); } /** * Add a quadratic bezier from the last point, approaching control point * (x1,y1), and ending at (x2,y2). If no moveTo() call has been made for * this contour, the first point is automatically set to (0,0). * * @param x1 The x-coordinate of the control point on a quadratic curve * @param y1 The y-coordinate of the control point on a quadratic curve * @param x2 The x-coordinate of the end point on a quadratic curve * @param y2 The y-coordinate of the end point on a quadratic curve */ public void quadTo(float x1, float y1, float x2, float y2) { native_quadTo(mNativePath, x1, y1, x2, y2); } /** * Same as quadTo, but the coordinates are considered relative to the last * point on this contour. If there is no previous point, then a moveTo(0,0) * is inserted automatically. * * @param dx1 The amount to add to the x-coordinate of the last point on * this contour, for the control point of a quadratic curve * @param dy1 The amount to add to the y-coordinate of the last point on * this contour, for the control point of a quadratic curve * @param dx2 The amount to add to the x-coordinate of the last point on * this contour, for the end point of a quadratic curve * @param dy2 The amount to add to the y-coordinate of the last point on * this contour, for the end point of a quadratic curve */ public void rQuadTo(float dx1, float dy1, float dx2, float dy2) { native_rQuadTo(mNativePath, dx1, dy1, dx2, dy2); } /** * Add a cubic bezier from the last point, approaching control points * (x1,y1) and (x2,y2), and ending at (x3,y3). If no moveTo() call has been * made for this contour, the first point is automatically set to (0,0). * * @param x1 The x-coordinate of the 1st control point on a cubic curve * @param y1 The y-coordinate of the 1st control point on a cubic curve * @param x2 The x-coordinate of the 2nd control point on a cubic curve * @param y2 The y-coordinate of the 2nd control point on a cubic curve * @param x3 The x-coordinate of the end point on a cubic curve * @param y3 The y-coordinate of the end point on a cubic curve */ public void cubicTo(float x1, float y1, float x2, float y2, float x3, float y3) { native_cubicTo(mNativePath, x1, y1, x2, y2, x3, y3); } /** * Same as cubicTo, but the coordinates are considered relative to the * current point on this contour. If there is no previous point, then a * moveTo(0,0) is inserted automatically. */ public void rCubicTo(float x1, float y1, float x2, float y2, float x3, float y3) { native_rCubicTo(mNativePath, x1, y1, x2, y2, x3, y3); } /** * Append the specified arc to the path as a new contour. If the start of * the path is different from the path's current last point, then an * automatic lineTo() is added to connect the current contour to the * start of the arc. However, if the path is empty, then we call moveTo() * with the first point of the arc. The sweep angle is tread mod 360. * * @param oval The bounds of oval defining shape and size of the arc * @param startAngle Starting angle (in degrees) where the arc begins * @param sweepAngle Sweep angle (in degrees) measured clockwise, treated * mod 360. * @param forceMoveTo If true, always begin a new contour with the arc */ public void arcTo(RectF oval, float startAngle, float sweepAngle, boolean forceMoveTo) { native_arcTo(mNativePath, oval, startAngle, sweepAngle, forceMoveTo); } /** * Append the specified arc to the path as a new contour. If the start of * the path is different from the path's current last point, then an * automatic lineTo() is added to connect the current contour to the * start of the arc. However, if the path is empty, then we call moveTo() * with the first point of the arc. * * @param oval The bounds of oval defining shape and size of the arc * @param startAngle Starting angle (in degrees) where the arc begins * @param sweepAngle Sweep angle (in degrees) measured clockwise */ public void arcTo(RectF oval, float startAngle, float sweepAngle) { native_arcTo(mNativePath, oval, startAngle, sweepAngle, false); } /** * Close the current contour. If the current point is not equal to the * first point of the contour, a line segment is automatically added. */ public void close() { native_close(mNativePath); } /** * Specifies how closed shapes (e.g. rects, ovals) are oriented when they * are added to a path. */ public enum Direction { /** clockwise */ CW (0), // must match enum in SkPath.h /** counter-clockwise */ CCW (1); // must match enum in SkPath.h Direction(int ni) { nativeInt = ni; } final int nativeInt; } /** * Add a closed rectangle contour to the path * * @param rect The rectangle to add as a closed contour to the path * @param dir The direction to wind the rectangle's contour */ public void addRect(RectF rect, Direction dir) { if (rect == null) { throw new NullPointerException("need rect parameter"); } native_addRect(mNativePath, rect, dir.nativeInt); } /** * Add a closed rectangle contour to the path * * @param left The left side of a rectangle to add to the path * @param top The top of a rectangle to add to the path * @param right The right side of a rectangle to add to the path * @param bottom The bottom of a rectangle to add to the path * @param dir The direction to wind the rectangle's contour */ public void addRect(float left, float top, float right, float bottom, Direction dir) { native_addRect(mNativePath, left, top, right, bottom, dir.nativeInt); } /** * Add a closed oval contour to the path * * @param oval The bounds of the oval to add as a closed contour to the path * @param dir The direction to wind the oval's contour */ public void addOval(RectF oval, Direction dir) { if (oval == null) { throw new NullPointerException("need oval parameter"); } native_addOval(mNativePath, oval, dir.nativeInt); } /** * Add a closed circle contour to the path * * @param x The x-coordinate of the center of a circle to add to the path * @param y The y-coordinate of the center of a circle to add to the path * @param radius The radius of a circle to add to the path * @param dir The direction to wind the circle's contour */ public void addCircle(float x, float y, float radius, Direction dir) { native_addCircle(mNativePath, x, y, radius, dir.nativeInt); } /** * Add the specified arc to the path as a new contour. * * @param oval The bounds of oval defining the shape and size of the arc * @param startAngle Starting angle (in degrees) where the arc begins * @param sweepAngle Sweep angle (in degrees) measured clockwise */ public void addArc(RectF oval, float startAngle, float sweepAngle) { if (oval == null) { throw new NullPointerException("need oval parameter"); } native_addArc(mNativePath, oval, startAngle, sweepAngle); } /** * Add a closed round-rectangle contour to the path * * @param rect The bounds of a round-rectangle to add to the path * @param rx The x-radius of the rounded corners on the round-rectangle * @param ry The y-radius of the rounded corners on the round-rectangle * @param dir The direction to wind the round-rectangle's contour */ public void addRoundRect(RectF rect, float rx, float ry, Direction dir) { if (rect == null) { throw new NullPointerException("need rect parameter"); } native_addRoundRect(mNativePath, rect, rx, ry, dir.nativeInt); } /** * Add a closed round-rectangle contour to the path. Each corner receives * two radius values [X, Y]. The corners are ordered top-left, top-right, * bottom-right, bottom-left * * @param rect The bounds of a round-rectangle to add to the path * @param radii Array of 8 values, 4 pairs of [X,Y] radii * @param dir The direction to wind the round-rectangle's contour */ public void addRoundRect(RectF rect, float[] radii, Direction dir) { if (rect == null) { throw new NullPointerException("need rect parameter"); } if (radii.length < 8) { throw new ArrayIndexOutOfBoundsException("radii[] needs 8 values"); } native_addRoundRect(mNativePath, rect, radii, dir.nativeInt); } /** * Add a copy of src to the path, offset by (dx,dy) * * @param src The path to add as a new contour * @param dx The amount to translate the path in X as it is added */ public void addPath(Path src, float dx, float dy) { native_addPath(mNativePath, src.mNativePath, dx, dy); } /** * Add a copy of src to the path * * @param src The path that is appended to the current path */ public void addPath(Path src) { native_addPath(mNativePath, src.mNativePath); } /** * Add a copy of src to the path, transformed by matrix * * @param src The path to add as a new contour */ public void addPath(Path src, Matrix matrix) { native_addPath(mNativePath, src.mNativePath, matrix.native_instance); } /** * Offset the path by (dx,dy), returning true on success * * @param dx The amount in the X direction to offset the entire path * @param dy The amount in the Y direction to offset the entire path * @param dst The translated path is written here. If this is null, then * the original path is modified. */ public void offset(float dx, float dy, Path dst) { int dstNative = 0; if (dst != null) { dstNative = dst.mNativePath; } native_offset(mNativePath, dx, dy, dstNative); } /** * Offset the path by (dx,dy), returning true on success * * @param dx The amount in the X direction to offset the entire path * @param dy The amount in the Y direction to offset the entire path */ public void offset(float dx, float dy) { native_offset(mNativePath, dx, dy); } /** * Sets the last point of the path. * * @param dx The new X coordinate for the last point * @param dy The new Y coordinate for the last point */ public void setLastPoint(float dx, float dy) { native_setLastPoint(mNativePath, dx, dy); } /** * Transform the points in this path by matrix, and write the answer * into dst. If dst is null, then the the original path is modified. * * @param matrix The matrix to apply to the path * @param dst The transformed path is written here. If dst is null, * then the the original path is modified */ public void transform(Matrix matrix, Path dst) { int dstNative = 0; if (dst != null) { dstNative = dst.mNativePath; } native_transform(mNativePath, matrix.native_instance, dstNative); } /** * Transform the points in this path by matrix. * * @param matrix The matrix to apply to the path */ public void transform(Matrix matrix) { native_transform(mNativePath, matrix.native_instance); } protected void finalize() throws Throwable { try { finalizer(mNativePath); } finally { super.finalize(); } } /*package*/ final int ni() { return mNativePath; } private static native int init1(); private static native int init2(int nPath); private static native void native_reset(int nPath); private static native void native_rewind(int nPath); private static native void native_set(int native_dst, int native_src); private static native int native_getFillType(int nPath); private static native void native_setFillType(int nPath, int ft); private static native boolean native_isEmpty(int nPath); private static native boolean native_isRect(int nPath, RectF rect); private static native void native_computeBounds(int nPath, RectF bounds, int btype); private static native void native_incReserve(int nPath, int extraPtCount); private static native void native_moveTo(int nPath, float x, float y); private static native void native_rMoveTo(int nPath, float dx, float dy); private static native void native_lineTo(int nPath, float x, float y); private static native void native_rLineTo(int nPath, float dx, float dy); private static native void native_quadTo(int nPath, float x1, float y1, float x2, float y2); private static native void native_rQuadTo(int nPath, float dx1, float dy1, float dx2, float dy2); private static native void native_cubicTo(int nPath, float x1, float y1, float x2, float y2, float x3, float y3); private static native void native_rCubicTo(int nPath, float x1, float y1, float x2, float y2, float x3, float y3); private static native void native_arcTo(int nPath, RectF oval, float startAngle, float sweepAngle, boolean forceMoveTo); private static native void native_close(int nPath); private static native void native_addRect(int nPath, RectF rect, int dir); private static native void native_addRect(int nPath, float left, float top, float right, float bottom, int dir); private static native void native_addOval(int nPath, RectF oval, int dir); private static native void native_addCircle(int nPath, float x, float y, float radius, int dir); private static native void native_addArc(int nPath, RectF oval, float startAngle, float sweepAngle); private static native void native_addRoundRect(int nPath, RectF rect, float rx, float ry, int dir); private static native void native_addRoundRect(int nPath, RectF r, float[] radii, int dir); private static native void native_addPath(int nPath, int src, float dx, float dy); private static native void native_addPath(int nPath, int src); private static native void native_addPath(int nPath, int src, int matrix); private static native void native_offset(int nPath, float dx, float dy, int dst_path); private static native void native_offset(int nPath, float dx, float dy); private static native void native_setLastPoint(int nPath, float dx, float dy); private static native void native_transform(int nPath, int matrix, int dst_path); private static native void native_transform(int nPath, int matrix); private static native void finalizer(int nPath); private final int mNativePath; }