/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** * @author Denis M. Kishenko * @version $Revision$ */ package java.awt.geom; import java.awt.Rectangle; import java.awt.Shape; import java.util.NoSuchElementException; import org.apache.harmony.awt.gl.Crossing; import org.apache.harmony.awt.internal.nls.Messages; /** * The Class CubicCurve2D is a Shape that represents a segment of a quadratic * (Bezier) curve. The curved segment is determined by four points: a start * point, an end point, and two control points. The control points give * information about the tangent and next derivative at the endpoints according * to the standard theory of Bezier curves. For more information on Bezier * curves, see <a href="http://en.wikipedia.org/wiki/B%C3%A9zier_curve">this * article</a>. * * @since Android 1.0 */ public abstract class CubicCurve2D implements Shape, Cloneable { /** * The Class Float is the subclass of CubicCurve2D that has all of its data * values stored with float-level precision. * * @since Android 1.0 */ public static class Float extends CubicCurve2D { /** * The x coordinate of the starting point. */ public float x1; /** * The y coordinate of the starting point. */ public float y1; /** * The x coordinate of the first control point. */ public float ctrlx1; /** * The y coordinate of the first control point. */ public float ctrly1; /** * The x coordinate of the second control point. */ public float ctrlx2; /** * The y coordinate of the second control point. */ public float ctrly2; /** * The x coordinate of the end point. */ public float x2; /** * The y coordinate of the end point. */ public float y2; /** * Instantiates a new float-valued CubicCurve2D with all coordinate * values set to zero. */ public Float() { } /** * Instantiates a new float-valued CubicCurve2D with the specified * coordinate values. * * @param x1 * the x coordinate of the starting point. * @param y1 * the y coordinate of the starting point. * @param ctrlx1 * the x coordinate of the first control point. * @param ctrly1 * the y coordinate of the first control point. * @param ctrlx2 * the x coordinate of the second control point. * @param ctrly2 * the y coordinate of the second control point. * @param x2 * the x coordinate of the end point. * @param y2 * the y coordinate of the end point. */ public Float(float x1, float y1, float ctrlx1, float ctrly1, float ctrlx2, float ctrly2, float x2, float y2) { setCurve(x1, y1, ctrlx1, ctrly1, ctrlx2, ctrly2, x2, y2); } @Override public double getX1() { return x1; } @Override public double getY1() { return y1; } @Override public double getCtrlX1() { return ctrlx1; } @Override public double getCtrlY1() { return ctrly1; } @Override public double getCtrlX2() { return ctrlx2; } @Override public double getCtrlY2() { return ctrly2; } @Override public double getX2() { return x2; } @Override public double getY2() { return y2; } @Override public Point2D getP1() { return new Point2D.Float(x1, y1); } @Override public Point2D getCtrlP1() { return new Point2D.Float(ctrlx1, ctrly1); } @Override public Point2D getCtrlP2() { return new Point2D.Float(ctrlx2, ctrly2); } @Override public Point2D getP2() { return new Point2D.Float(x2, y2); } @Override public void setCurve(double x1, double y1, double ctrlx1, double ctrly1, double ctrlx2, double ctrly2, double x2, double y2) { this.x1 = (float)x1; this.y1 = (float)y1; this.ctrlx1 = (float)ctrlx1; this.ctrly1 = (float)ctrly1; this.ctrlx2 = (float)ctrlx2; this.ctrly2 = (float)ctrly2; this.x2 = (float)x2; this.y2 = (float)y2; } /** * Sets the data values of the curve. * * @param x1 * the x coordinate of the starting point. * @param y1 * the y coordinate of the starting point. * @param ctrlx1 * the x coordinate of the first control point. * @param ctrly1 * the y coordinate of the first control point. * @param ctrlx2 * the x coordinate of the second control point. * @param ctrly2 * the y coordinate of the second control point. * @param x2 * the x coordinate of the end point. * @param y2 * the y coordinate of the end point. */ public void setCurve(float x1, float y1, float ctrlx1, float ctrly1, float ctrlx2, float ctrly2, float x2, float y2) { this.x1 = x1; this.y1 = y1; this.ctrlx1 = ctrlx1; this.ctrly1 = ctrly1; this.ctrlx2 = ctrlx2; this.ctrly2 = ctrly2; this.x2 = x2; this.y2 = y2; } public Rectangle2D getBounds2D() { float rx1 = Math.min(Math.min(x1, x2), Math.min(ctrlx1, ctrlx2)); float ry1 = Math.min(Math.min(y1, y2), Math.min(ctrly1, ctrly2)); float rx2 = Math.max(Math.max(x1, x2), Math.max(ctrlx1, ctrlx2)); float ry2 = Math.max(Math.max(y1, y2), Math.max(ctrly1, ctrly2)); return new Rectangle2D.Float(rx1, ry1, rx2 - rx1, ry2 - ry1); } } /** * The Class Double is the subclass of CubicCurve2D that has all of its data * values stored with double-level precision. * * @since Android 1.0 */ public static class Double extends CubicCurve2D { /** * The x coordinate of the starting point. */ public double x1; /** * The y coordinate of the starting point. */ public double y1; /** * The x coordinate of the first control point. */ public double ctrlx1; /** * The y coordinate of the first control point. */ public double ctrly1; /** * The x coordinate of the second control point. */ public double ctrlx2; /** * The y coordinate of the second control point. */ public double ctrly2; /** * The x coordinate of the end point. */ public double x2; /** * The y coordinate of the end point. */ public double y2; /** * Instantiates a new double-valued CubicCurve2D with all coordinate * values set to zero. */ public Double() { } /** * Instantiates a new double-valued CubicCurve2D with the specified * coordinate values. * * @param x1 * the x coordinate of the starting point. * @param y1 * the y coordinate of the starting point. * @param ctrlx1 * the x coordinate of the first control point. * @param ctrly1 * the y coordinate of the first control point. * @param ctrlx2 * the x coordinate of the second control point. * @param ctrly2 * the y coordinate of the second control point. * @param x2 * the x coordinate of the end point. * @param y2 * the y coordinate of the end point. */ public Double(double x1, double y1, double ctrlx1, double ctrly1, double ctrlx2, double ctrly2, double x2, double y2) { setCurve(x1, y1, ctrlx1, ctrly1, ctrlx2, ctrly2, x2, y2); } @Override public double getX1() { return x1; } @Override public double getY1() { return y1; } @Override public double getCtrlX1() { return ctrlx1; } @Override public double getCtrlY1() { return ctrly1; } @Override public double getCtrlX2() { return ctrlx2; } @Override public double getCtrlY2() { return ctrly2; } @Override public double getX2() { return x2; } @Override public double getY2() { return y2; } @Override public Point2D getP1() { return new Point2D.Double(x1, y1); } @Override public Point2D getCtrlP1() { return new Point2D.Double(ctrlx1, ctrly1); } @Override public Point2D getCtrlP2() { return new Point2D.Double(ctrlx2, ctrly2); } @Override public Point2D getP2() { return new Point2D.Double(x2, y2); } @Override public void setCurve(double x1, double y1, double ctrlx1, double ctrly1, double ctrlx2, double ctrly2, double x2, double y2) { this.x1 = x1; this.y1 = y1; this.ctrlx1 = ctrlx1; this.ctrly1 = ctrly1; this.ctrlx2 = ctrlx2; this.ctrly2 = ctrly2; this.x2 = x2; this.y2 = y2; } public Rectangle2D getBounds2D() { double rx1 = Math.min(Math.min(x1, x2), Math.min(ctrlx1, ctrlx2)); double ry1 = Math.min(Math.min(y1, y2), Math.min(ctrly1, ctrly2)); double rx2 = Math.max(Math.max(x1, x2), Math.max(ctrlx1, ctrlx2)); double ry2 = Math.max(Math.max(y1, y2), Math.max(ctrly1, ctrly2)); return new Rectangle2D.Double(rx1, ry1, rx2 - rx1, ry2 - ry1); } } /* * CubicCurve2D path iterator */ /** * The Iterator class for the Shape CubicCurve2D. */ class Iterator implements PathIterator { /** * The source CubicCurve2D object. */ CubicCurve2D c; /** * The path iterator transformation. */ AffineTransform t; /** * The current segment index. */ int index; /** * Constructs a new CubicCurve2D.Iterator for given line and * transformation * * @param c * the source CubicCurve2D object. * @param t * the affine transformation object. */ Iterator(CubicCurve2D c, AffineTransform t) { this.c = c; this.t = t; } public int getWindingRule() { return WIND_NON_ZERO; } public boolean isDone() { return index > 1; } public void next() { index++; } public int currentSegment(double[] coords) { if (isDone()) { throw new NoSuchElementException(Messages.getString("awt.4B")); //$NON-NLS-1$ } int type; int count; if (index == 0) { type = SEG_MOVETO; coords[0] = c.getX1(); coords[1] = c.getY1(); count = 1; } else { type = SEG_CUBICTO; coords[0] = c.getCtrlX1(); coords[1] = c.getCtrlY1(); coords[2] = c.getCtrlX2(); coords[3] = c.getCtrlY2(); coords[4] = c.getX2(); coords[5] = c.getY2(); count = 3; } if (t != null) { t.transform(coords, 0, coords, 0, count); } return type; } public int currentSegment(float[] coords) { if (isDone()) { throw new NoSuchElementException(Messages.getString("awt.4B")); //$NON-NLS-1$ } int type; int count; if (index == 0) { type = SEG_MOVETO; coords[0] = (float)c.getX1(); coords[1] = (float)c.getY1(); count = 1; } else { type = SEG_CUBICTO; coords[0] = (float)c.getCtrlX1(); coords[1] = (float)c.getCtrlY1(); coords[2] = (float)c.getCtrlX2(); coords[3] = (float)c.getCtrlY2(); coords[4] = (float)c.getX2(); coords[5] = (float)c.getY2(); count = 3; } if (t != null) { t.transform(coords, 0, coords, 0, count); } return type; } } /** * Instantiates a new 2-D cubic curve. */ protected CubicCurve2D() { } /** * Gets the x coordinate of the starting point. * * @return the x coordinate of the starting point. */ public abstract double getX1(); /** * Gets the y coordinate of the starting point. * * @return the y coordinate of the starting point. */ public abstract double getY1(); /** * Gets the starting point. * * @return the starting point. */ public abstract Point2D getP1(); /** * Gets the x coordinate of the first control point. * * @return the x coordinate of the first control point. */ public abstract double getCtrlX1(); /** * Gets the y coordinate of the first control point. * * @return the y coordinate of the first control point. */ public abstract double getCtrlY1(); /** * Gets the second control point. * * @return the second control point. */ public abstract Point2D getCtrlP1(); /** * Gets the x coordinate of the second control point. * * @return the x coordinate of the second control point */ public abstract double getCtrlX2(); /** * Gets the y coordinate of the second control point. * * @return the y coordinate of the second control point */ public abstract double getCtrlY2(); /** * Gets the second control point. * * @return the second control point. */ public abstract Point2D getCtrlP2(); /** * Gets the x coordinate of the end point. * * @return the x coordinate of the end point. */ public abstract double getX2(); /** * Gets the y coordinate of the end point. * * @return the y coordinate of the end point. */ public abstract double getY2(); /** * Gets the end point. * * @return the end point. */ public abstract Point2D getP2(); /** * Sets the data of the curve. * * @param x1 * the x coordinate of the starting point. * @param y1 * the y coordinate of the starting point. * @param ctrlx1 * the x coordinate of the first control point. * @param ctrly1 * the y coordinate of the first control point. * @param ctrlx2 * the x coordinate of the second control point. * @param ctrly2 * the y coordinate of the second control point. * @param x2 * the x coordinate of the end point. * @param y2 * the y coordinate of the end point. */ public abstract void setCurve(double x1, double y1, double ctrlx1, double ctrly1, double ctrlx2, double ctrly2, double x2, double y2); /** * Sets the data of the curve as point objects. * * @param p1 * the starting point. * @param cp1 * the first control point. * @param cp2 * the second control point. * @param p2 * the end point. * @throws NullPointerException * if any of the points is null. */ public void setCurve(Point2D p1, Point2D cp1, Point2D cp2, Point2D p2) { setCurve(p1.getX(), p1.getY(), cp1.getX(), cp1.getY(), cp2.getX(), cp2.getY(), p2.getX(), p2.getY()); } /** * Sets the data of the curve by reading the data from an array of values. * The values are read in the same order as the arguments of the method * {@link CubicCurve2D#setCurve(double, double, double, double, double, double, double, double)} * . * * @param coords * the array of values containing the new coordinates. * @param offset * the offset of the data to read within the array. * @throws ArrayIndexOutOfBoundsException * if {@code coords.length} < offset + 8. * @throws NullPointerException * if the coordinate array is null. */ public void setCurve(double[] coords, int offset) { setCurve(coords[offset + 0], coords[offset + 1], coords[offset + 2], coords[offset + 3], coords[offset + 4], coords[offset + 5], coords[offset + 6], coords[offset + 7]); } /** * Sets the data of the curve by reading the data from an array of points. * The values are read in the same order as the arguments of the method * {@link CubicCurve2D#setCurve(Point2D, Point2D, Point2D, Point2D)} * * @param points * the array of points containing the new coordinates. * @param offset * the offset of the data to read within the array. * @throws ArrayIndexOutOfBoundsException * if {@code points.length} < offset + . * @throws NullPointerException * if the point array is null. */ public void setCurve(Point2D[] points, int offset) { setCurve(points[offset + 0].getX(), points[offset + 0].getY(), points[offset + 1].getX(), points[offset + 1].getY(), points[offset + 2].getX(), points[offset + 2].getY(), points[offset + 3].getX(), points[offset + 3].getY()); } /** * Sets the data of the curve by copying it from another CubicCurve2D. * * @param curve * the curve to copy the data points from. * @throws NullPointerException * if the curve is null. */ public void setCurve(CubicCurve2D curve) { setCurve(curve.getX1(), curve.getY1(), curve.getCtrlX1(), curve.getCtrlY1(), curve .getCtrlX2(), curve.getCtrlY2(), curve.getX2(), curve.getY2()); } /** * Gets the square of the flatness of this curve, where the flatness is the * maximum distance from the curves control points to the line segment * connecting the two points. * * @return the square of the flatness. */ public double getFlatnessSq() { return getFlatnessSq(getX1(), getY1(), getCtrlX1(), getCtrlY1(), getCtrlX2(), getCtrlY2(), getX2(), getY2()); } /** * Gets the square of the flatness of the cubic curve segment defined by the * specified values. * * @param x1 * the x coordinate of the starting point. * @param y1 * the y coordinate of the starting point. * @param ctrlx1 * the x coordinate of the first control point. * @param ctrly1 * the y coordinate of the first control point. * @param ctrlx2 * the x coordinate of the second control point. * @param ctrly2 * the y coordinate of the second control point. * @param x2 * the x coordinate of the end point. * @param y2 * the y coordinate of the end point. * @return the square of the flatness. */ public static double getFlatnessSq(double x1, double y1, double ctrlx1, double ctrly1, double ctrlx2, double ctrly2, double x2, double y2) { return Math.max(Line2D.ptSegDistSq(x1, y1, x2, y2, ctrlx1, ctrly1), Line2D.ptSegDistSq(x1, y1, x2, y2, ctrlx2, ctrly2)); } /** * Gets the square of the flatness of the cubic curve segment defined by the * specified values. The values are read in the same order as the arguments * of the method * {@link CubicCurve2D#getFlatnessSq(double, double, double, double, double, double, double, double)} * . * * @param coords * the array of points containing the new coordinates. * @param offset * the offset of the data to read within the array. * @return the square of the flatness. * @throws ArrayIndexOutOfBoundsException * if points.length < offset + . * @throws NullPointerException * if the point array is null. */ public static double getFlatnessSq(double coords[], int offset) { return getFlatnessSq(coords[offset + 0], coords[offset + 1], coords[offset + 2], coords[offset + 3], coords[offset + 4], coords[offset + 5], coords[offset + 6], coords[offset + 7]); } /** * Gets the flatness of this curve, where the flatness is the maximum * distance from the curves control points to the line segment connecting * the two points. * * @return the flatness of this curve. */ public double getFlatness() { return getFlatness(getX1(), getY1(), getCtrlX1(), getCtrlY1(), getCtrlX2(), getCtrlY2(), getX2(), getY2()); } /** * Gets the flatness of the cubic curve segment defined by the specified * values. * * @param x1 * the x coordinate of the starting point. * @param y1 * the y coordinate of the starting point. * @param ctrlx1 * the x coordinate of the first control point. * @param ctrly1 * the y coordinate of the first control point. * @param ctrlx2 * the x coordinate of the second control point. * @param ctrly2 * the y coordinate of the second control point. * @param x2 * the x coordinate of the end point. * @param y2 * the y coordinate of the end point. * @return the flatness. */ public static double getFlatness(double x1, double y1, double ctrlx1, double ctrly1, double ctrlx2, double ctrly2, double x2, double y2) { return Math.sqrt(getFlatnessSq(x1, y1, ctrlx1, ctrly1, ctrlx2, ctrly2, x2, y2)); } /** * Gets the flatness of the cubic curve segment defined by the specified * values. The values are read in the same order as the arguments of the * method * {@link CubicCurve2D#getFlatness(double, double, double, double, double, double, double, double)} * . * * @param coords * the array of points containing the new coordinates. * @param offset * the offset of the data to read within the array. * @return the flatness. * @throws ArrayIndexOutOfBoundsException * if points.length < offset + . * @throws NullPointerException * if the point array is null. */ public static double getFlatness(double coords[], int offset) { return getFlatness(coords[offset + 0], coords[offset + 1], coords[offset + 2], coords[offset + 3], coords[offset + 4], coords[offset + 5], coords[offset + 6], coords[offset + 7]); } /** * Creates the data for two cubic curves by dividing this curve in two. The * division point is the point on the curve that is closest to the average * of curve's two control points. The two new control points (nearest the * new endpoint) are computed by averaging the original control points with * the new endpoint. The data of this curve is left unchanged. * * @param left * the CubicCurve2D where the left (start) segment's data is * written. * @param right * the CubicCurve2D where the right (end) segment's data is * written. * @throws NullPointerException * if either curve is null. */ public void subdivide(CubicCurve2D left, CubicCurve2D right) { subdivide(this, left, right); } /** * Creates the data for two cubic curves by dividing the specified curve in * two. The division point is the point on the curve that is closest to the * average of curve's two control points. The two new control points * (nearest the new endpoint) are computed by averaging the original control * points with the new endpoint. The data of the source curve is left * unchanged. * * @param src * the original curve to be divided in two. * @param left * the CubicCurve2D where the left (start) segment's data is * written. * @param right * the CubicCurve2D where the right (end) segment's data is * written. * @throws NullPointerException * if either curve is null. */ public static void subdivide(CubicCurve2D src, CubicCurve2D left, CubicCurve2D right) { double x1 = src.getX1(); double y1 = src.getY1(); double cx1 = src.getCtrlX1(); double cy1 = src.getCtrlY1(); double cx2 = src.getCtrlX2(); double cy2 = src.getCtrlY2(); double x2 = src.getX2(); double y2 = src.getY2(); double cx = (cx1 + cx2) / 2.0; double cy = (cy1 + cy2) / 2.0; cx1 = (x1 + cx1) / 2.0; cy1 = (y1 + cy1) / 2.0; cx2 = (x2 + cx2) / 2.0; cy2 = (y2 + cy2) / 2.0; double ax = (cx1 + cx) / 2.0; double ay = (cy1 + cy) / 2.0; double bx = (cx2 + cx) / 2.0; double by = (cy2 + cy) / 2.0; cx = (ax + bx) / 2.0; cy = (ay + by) / 2.0; if (left != null) { left.setCurve(x1, y1, cx1, cy1, ax, ay, cx, cy); } if (right != null) { right.setCurve(cx, cy, bx, by, cx2, cy2, x2, y2); } } /** * Creates the data for two cubic curves by dividing the specified curve in * two. The division point is the point on the curve that is closest to the * average of curve's two control points. The two new control points * (nearest the new endpoint) are computed by averaging the original control * points with the new endpoint. The data of the source curve is left * unchanged. The data for the three curves is read/written in the usual * order: { x1, y1, ctrlx1, ctrly1, ctrlx2, crtry2, x2, y3 } * * @param src * the array that gives the data values for the source curve. * @param srcOff * the offset in the src array to read the values from. * @param left * the array where the coordinates of the start curve should be * written. * @param leftOff * the offset in the left array to start writing the values. * @param right * the array where the coordinates of the end curve should be * written. * @param rightOff * the offset in the right array to start writing the values. * @throws ArrayIndexOutOfBoundsException * if src.length < srcoff + 8 or if left.length < leftOff + 8 or * if right.length < rightOff + 8. * @throws NullPointerException * if one of the arrays is null. */ public static void subdivide(double src[], int srcOff, double left[], int leftOff, double right[], int rightOff) { double x1 = src[srcOff + 0]; double y1 = src[srcOff + 1]; double cx1 = src[srcOff + 2]; double cy1 = src[srcOff + 3]; double cx2 = src[srcOff + 4]; double cy2 = src[srcOff + 5]; double x2 = src[srcOff + 6]; double y2 = src[srcOff + 7]; double cx = (cx1 + cx2) / 2.0; double cy = (cy1 + cy2) / 2.0; cx1 = (x1 + cx1) / 2.0; cy1 = (y1 + cy1) / 2.0; cx2 = (x2 + cx2) / 2.0; cy2 = (y2 + cy2) / 2.0; double ax = (cx1 + cx) / 2.0; double ay = (cy1 + cy) / 2.0; double bx = (cx2 + cx) / 2.0; double by = (cy2 + cy) / 2.0; cx = (ax + bx) / 2.0; cy = (ay + by) / 2.0; if (left != null) { left[leftOff + 0] = x1; left[leftOff + 1] = y1; left[leftOff + 2] = cx1; left[leftOff + 3] = cy1; left[leftOff + 4] = ax; left[leftOff + 5] = ay; left[leftOff + 6] = cx; left[leftOff + 7] = cy; } if (right != null) { right[rightOff + 0] = cx; right[rightOff + 1] = cy; right[rightOff + 2] = bx; right[rightOff + 3] = by; right[rightOff + 4] = cx2; right[rightOff + 5] = cy2; right[rightOff + 6] = x2; right[rightOff + 7] = y2; } } /** * Finds the roots of the cubic polynomial. This is accomplished by finding * the (real) values of x that solve the following equation: eqn[3]*x*x*x + * eqn[2]*x*x + eqn[1]*x + eqn[0] = 0. The solutions are written back into * the array eqn starting from the index 0 in the array. The return value * tells how many array elements have been changed by this method call. * * @param eqn * an array containing the coefficients of the cubic polynomial * to solve. * @return the number of roots of the cubic polynomial. * @throws ArrayIndexOutOfBoundsException * if eqn.length < 4. * @throws NullPointerException * if the array is null. */ public static int solveCubic(double eqn[]) { return solveCubic(eqn, eqn); } /** * Finds the roots of the cubic polynomial. This is accomplished by finding * the (real) values of x that solve the following equation: eqn[3]*x*x*x + * eqn[2]*x*x + eqn[1]*x + eqn[0] = 0. The solutions are written into the * array res starting from the index 0 in the array. The return value tells * how many array elements have been changed by this method call. * * @param eqn * an array containing the coefficients of the cubic polynomial * to solve. * @param res * the array that this method writes the results into. * @return the number of roots of the cubic polynomial. * @throws ArrayIndexOutOfBoundsException * if eqn.length < 4 or if res.length is less than the number of * roots. * @throws NullPointerException * if either array is null. */ public static int solveCubic(double eqn[], double res[]) { return Crossing.solveCubic(eqn, res); } public boolean contains(double px, double py) { return Crossing.isInsideEvenOdd(Crossing.crossShape(this, px, py)); } public boolean contains(double rx, double ry, double rw, double rh) { int cross = Crossing.intersectShape(this, rx, ry, rw, rh); return cross != Crossing.CROSSING && Crossing.isInsideEvenOdd(cross); } public boolean intersects(double rx, double ry, double rw, double rh) { int cross = Crossing.intersectShape(this, rx, ry, rw, rh); return cross == Crossing.CROSSING || Crossing.isInsideEvenOdd(cross); } public boolean contains(Point2D p) { return contains(p.getX(), p.getY()); } public boolean intersects(Rectangle2D r) { return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight()); } public boolean contains(Rectangle2D r) { return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight()); } public Rectangle getBounds() { return getBounds2D().getBounds(); } public PathIterator getPathIterator(AffineTransform t) { return new Iterator(this, t); } public PathIterator getPathIterator(AffineTransform at, double flatness) { return new FlatteningPathIterator(getPathIterator(at), flatness); } @Override public Object clone() { try { return super.clone(); } catch (CloneNotSupportedException e) { throw new InternalError(); } } }