/*******************************************************************************
* Copyright (c) 2010 Haifeng Li
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
package smile.stat.distribution;
import org.junit.After;
import org.junit.AfterClass;
import org.junit.Before;
import org.junit.BeforeClass;
import org.junit.Test;
import static org.junit.Assert.*;
/**
*
* @author Haifeng Li
*/
public class GaussianMixtureTest {
public GaussianMixtureTest() {
}
@BeforeClass
public static void setUpClass() throws Exception {
}
@AfterClass
public static void tearDownClass() throws Exception {
}
@Before
public void setUp() {
}
@After
public void tearDown() {
}
/**
* Test of GaussianMixture.
*/
@Test
public void testMixture3() {
System.out.println("Mixture3");
double[] data = {
23.0, 23.0, 22.0, 22.0, 21.0, 24.0, 24.0, 24.0, 24.0,
24.0, 24.0, 24.0, 24.0, 22.0, 22.0, 16.0, 16.0, 16.0,
23.0, 23.0, 15.0, 21.0, 21.0, 21.0, 21.0, 24.0, 24.0,
21.0, 21.0, 24.0, 24.0, 24.0, 24.0, 1.0, 1.0, 23.0,
23.0, 22.0, 22.0, 14.0, 24.0, 24.0, 23.0, 23.0, 18.0,
18.0, 23.0, 23.0, 24.0, 24.0, 22.0, 22.0, 17.0, 17.0,
17.0, 21.0, 21.0, 15.0, 14.0
};
GaussianMixture mixture = new GaussianMixture(data);
System.out.println(mixture);
assertEquals(3, mixture.size());
}
/**
* Test of GaussianMixture.
*/
@Test
public void testMixture5() {
System.out.println("Mixture5");
double[] data = new double[30000];
GaussianDistribution g1 = new GaussianDistribution(1.0, 1.0);
for (int i = 0; i < 5000; i++)
data[i] = g1.rand();
GaussianDistribution g2 = new GaussianDistribution(4.0, 1.0);
for (int i = 5000; i < 10000; i++)
data[i] = g2.rand();
GaussianDistribution g3 = new GaussianDistribution(8.0, 1.0);
for (int i = 10000; i < 20000; i++)
data[i] = g3.rand();
GaussianDistribution g4 = new GaussianDistribution(-2.0, 1.0);
for (int i = 20000; i < 25000; i++)
data[i] = g4.rand();
GaussianDistribution g5 = new GaussianDistribution(-5.0, 1.0);
for (int i = 25000; i < 30000; i++)
data[i] = g5.rand();
/* TODO: It doesn't converge any more
GaussianMixture mixture = new GaussianMixture(data);
System.out.println(mixture);
assertTrue(mixture.size() <= 7);
assertTrue(mixture.size() >= 5);
*/
}
}