/******************************************************************************* * Copyright (c) 2010 Haifeng Li * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ package smile.classification; import smile.data.NominalAttribute; import smile.data.parser.DelimitedTextParser; import smile.data.AttributeDataset; import smile.data.parser.ArffParser; import org.junit.After; import org.junit.AfterClass; import org.junit.Before; import org.junit.BeforeClass; import org.junit.Test; import smile.math.Math; import smile.validation.LOOCV; import static org.junit.Assert.*; /** * * @author Haifeng Li */ public class LDATest { public LDATest() { } @BeforeClass public static void setUpClass() throws Exception { } @AfterClass public static void tearDownClass() throws Exception { } @Before public void setUp() { } @After public void tearDown() { } /** * Test of learn method, of class LDA. */ @Test public void testLearn() { System.out.println("learn"); ArffParser arffParser = new ArffParser(); arffParser.setResponseIndex(4); try { AttributeDataset iris = arffParser.parse(smile.data.parser.IOUtils.getTestDataFile("weka/iris.arff")); double[][] x = iris.toArray(new double[iris.size()][]); int[] y = iris.toArray(new int[iris.size()]); int n = x.length; LOOCV loocv = new LOOCV(n); int error = 0; double[] posteriori = new double[3]; for (int i = 0; i < n; i++) { double[][] trainx = Math.slice(x, loocv.train[i]); int[] trainy = Math.slice(y, loocv.train[i]); LDA lda = new LDA(trainx, trainy); if (y[loocv.test[i]] != lda.predict(x[loocv.test[i]], posteriori)) error++; //System.out.println(posteriori[0]+"\t"+posteriori[1]+"\t"+posteriori[2]); } System.out.println("LDA error = " + error); assertEquals(22, error); } catch (Exception ex) { System.err.println(ex); } } /** * Test of learn method, of class LDA. */ @Test public void testUSPS() { System.out.println("USPS"); DelimitedTextParser parser = new DelimitedTextParser(); parser.setResponseIndex(new NominalAttribute("class"), 0); try { AttributeDataset train = parser.parse("USPS Train", smile.data.parser.IOUtils.getTestDataFile("usps/zip.train")); AttributeDataset test = parser.parse("USPS Test", smile.data.parser.IOUtils.getTestDataFile("usps/zip.test")); double[][] x = train.toArray(new double[train.size()][]); int[] y = train.toArray(new int[train.size()]); double[][] testx = test.toArray(new double[test.size()][]); int[] testy = test.toArray(new int[test.size()]); LDA lda = new LDA(x, y); int error = 0; for (int i = 0; i < testx.length; i++) { if (lda.predict(testx[i]) != testy[i]) { error++; } } System.out.format("USPS error rate = %.2f%%%n", 100.0 * error / testx.length); assertEquals(256, error); } catch (Exception ex) { System.err.println(ex); } } }