/******************************************************************************* * Copyright (c) 2010 Haifeng Li * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ package smile.regression; import org.junit.After; import org.junit.AfterClass; import org.junit.Before; import org.junit.BeforeClass; import org.junit.Test; import smile.data.AttributeDataset; import smile.data.parser.ArffParser; import smile.validation.LOOCV; import smile.math.Math; import smile.sort.QuickSort; import smile.validation.CrossValidation; import smile.validation.Validation; /** * * @author Haifeng Li */ public class RandomForestTest { public RandomForestTest() { } @BeforeClass public static void setUpClass() throws Exception { } @AfterClass public static void tearDownClass() throws Exception { } @Before public void setUp() { } @After public void tearDown() { } /** * Test of predict method, of class RandomForest. */ @Test public void testPredict() { System.out.println("predict"); double[][] longley = { {234.289, 235.6, 159.0, 107.608, 1947, 60.323}, {259.426, 232.5, 145.6, 108.632, 1948, 61.122}, {258.054, 368.2, 161.6, 109.773, 1949, 60.171}, {284.599, 335.1, 165.0, 110.929, 1950, 61.187}, {328.975, 209.9, 309.9, 112.075, 1951, 63.221}, {346.999, 193.2, 359.4, 113.270, 1952, 63.639}, {365.385, 187.0, 354.7, 115.094, 1953, 64.989}, {363.112, 357.8, 335.0, 116.219, 1954, 63.761}, {397.469, 290.4, 304.8, 117.388, 1955, 66.019}, {419.180, 282.2, 285.7, 118.734, 1956, 67.857}, {442.769, 293.6, 279.8, 120.445, 1957, 68.169}, {444.546, 468.1, 263.7, 121.950, 1958, 66.513}, {482.704, 381.3, 255.2, 123.366, 1959, 68.655}, {502.601, 393.1, 251.4, 125.368, 1960, 69.564}, {518.173, 480.6, 257.2, 127.852, 1961, 69.331}, {554.894, 400.7, 282.7, 130.081, 1962, 70.551} }; double[] y = { 83.0, 88.5, 88.2, 89.5, 96.2, 98.1, 99.0, 100.0, 101.2, 104.6, 108.4, 110.8, 112.6, 114.2, 115.7, 116.9 }; int n = longley.length; LOOCV loocv = new LOOCV(n); double rss = 0.0; for (int i = 0; i < n; i++) { double[][] trainx = Math.slice(longley, loocv.train[i]); double[] trainy = Math.slice(y, loocv.train[i]); try { RandomForest forest = new RandomForest(trainx, trainy, 300, n, 3, 2); double r = y[loocv.test[i]] - forest.predict(longley[loocv.test[i]]); rss += r * r; } catch (Exception ex) { System.err.println(ex); } } System.out.println("MSE = " + rss/n); } public void test(String dataset, String url, int response) { System.out.println(dataset); ArffParser parser = new ArffParser(); parser.setResponseIndex(response); try { AttributeDataset data = parser.parse(smile.data.parser.IOUtils.getTestDataFile(url)); double[] datay = data.toArray(new double[data.size()]); double[][] datax = data.toArray(new double[data.size()][]); int n = datax.length; int k = 10; CrossValidation cv = new CrossValidation(n, k); double rss = 0.0; double ad = 0.0; for (int i = 0; i < k; i++) { double[][] trainx = Math.slice(datax, cv.train[i]); double[] trainy = Math.slice(datay, cv.train[i]); double[][] testx = Math.slice(datax, cv.test[i]); double[] testy = Math.slice(datay, cv.test[i]); RandomForest forest = new RandomForest(data.attributes(), trainx, trainy, 200, n, 5, trainx[0].length/3); System.out.format("OOB error rate = %.4f%n", forest.error()); for (int j = 0; j < testx.length; j++) { double r = testy[j] - forest.predict(testx[j]); rss += r * r; ad += Math.abs(r); } } System.out.format("10-CV RMSE = %.4f \t AbsoluteDeviation = %.4f%n", Math.sqrt(rss/n), ad/n); } catch (Exception ex) { System.err.println(ex); } } /** * Test of learn method, of class RandomForest. */ @Test public void testAll() { test("CPU", "weka/cpu.arff", 6); //test("2dplanes", "weka/regression/2dplanes.arff", 6); //test("abalone", "weka/regression/abalone.arff", 8); //test("ailerons", "weka/regression/ailerons.arff", 40); //test("bank32nh", "weka/regression/bank32nh.arff", 32); test("autoMPG", "weka/regression/autoMpg.arff", 7); //test("cal_housing", "weka/regression/cal_housing.arff", 8); //test("puma8nh", "weka/regression/puma8nh.arff", 8); //test("kin8nm", "weka/regression/kin8nm.arff", 8); } /** * Test of learn method, of class RandomForest. */ @Test public void testCPU() { System.out.println("CPU"); ArffParser parser = new ArffParser(); parser.setResponseIndex(6); try { AttributeDataset data = parser.parse(smile.data.parser.IOUtils.getTestDataFile("weka/cpu.arff")); double[] datay = data.toArray(new double[data.size()]); double[][] datax = data.toArray(new double[data.size()][]); int n = datax.length; int m = 3 * n / 4; int[] index = Math.permutate(n); double[][] trainx = new double[m][]; double[] trainy = new double[m]; for (int i = 0; i < m; i++) { trainx[i] = datax[index[i]]; trainy[i] = datay[index[i]]; } double[][] testx = new double[n-m][]; double[] testy = new double[n-m]; for (int i = m; i < n; i++) { testx[i-m] = datax[index[i]]; testy[i-m] = datay[index[i]]; } RandomForest forest = new RandomForest(data.attributes(), trainx, trainy, 100, n, 5, trainx[0].length / 3); System.out.format("RMSE = %.4f%n", Validation.test(forest, testx, testy)); double[] rmse = forest.test(testx, testy); for (int i = 1; i <= rmse.length; i++) { System.out.format("%d trees RMSE = %.4f%n", i, rmse[i-1]); } double[] importance = forest.importance(); index = QuickSort.sort(importance); for (int i = importance.length; i-- > 0; ) { System.out.format("%s importance is %.4f%n", data.attributes()[index[i]], importance[i]); } } catch (Exception ex) { System.err.println(ex); } } }