/******************************************************************************* * Copyright (c) 2010 Haifeng Li * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ package smile.clustering; import smile.clustering.linkage.SingleLinkage; import smile.clustering.linkage.WPGMCLinkage; import smile.clustering.linkage.WardLinkage; import smile.clustering.linkage.UPGMCLinkage; import smile.clustering.linkage.WPGMALinkage; import smile.clustering.linkage.UPGMALinkage; import smile.clustering.linkage.CompleteLinkage; import smile.math.Math; import smile.validation.RandIndex; import smile.validation.AdjustedRandIndex; import smile.data.AttributeDataset; import smile.data.NominalAttribute; import smile.data.parser.DelimitedTextParser; import org.junit.After; import org.junit.AfterClass; import org.junit.Before; import org.junit.BeforeClass; import org.junit.Test; import static org.junit.Assert.*; /** * * @author Haifeng */ public class HierarchicalClusteringTest { public HierarchicalClusteringTest() { } @BeforeClass public static void setUpClass() throws Exception { } @AfterClass public static void tearDownClass() throws Exception { } @Before public void setUp() { } @After public void tearDown() { } /** * Test of learn method, of class GMeans. */ @Test public void testUSPS() { System.out.println("USPS"); DelimitedTextParser parser = new DelimitedTextParser(); parser.setResponseIndex(new NominalAttribute("class"), 0); try { AttributeDataset train = parser.parse("USPS Train", smile.data.parser.IOUtils.getTestDataFile("usps/zip.train")); double[][] x = train.toArray(new double[train.size()][]); int[] y = train.toArray(new int[train.size()]); int n = x.length; double[][] proximity = new double[n][]; for (int i = 0; i < n; i++) { proximity[i] = new double[i + 1]; for (int j = 0; j < i; j++) { proximity[i][j] = Math.distance(x[i], x[j]); } } AdjustedRandIndex ari = new AdjustedRandIndex(); RandIndex rand = new RandIndex(); HierarchicalClustering hc = new HierarchicalClustering(new SingleLinkage(proximity)); int[] label = hc.partition(10); double r = rand.measure(y, label); double r2 = ari.measure(y, label); System.out.format("SingleLinkage rand index = %.2f%%\tadjusted rand index = %.2f%%%n", 100.0 * r, 100.0 * r2); assertTrue(r > 0.1); hc = new HierarchicalClustering(new CompleteLinkage(proximity)); label = hc.partition(10); r = rand.measure(y, label); r2 = ari.measure(y, label); System.out.format("CompleteLinkage rand index = %.2f%%\tadjusted rand index = %.2f%%%n", 100.0 * r, 100.0 * r2); assertTrue(r > 0.75); hc = new HierarchicalClustering(new UPGMALinkage(proximity)); label = hc.partition(10); r = rand.measure(y, label); r2 = ari.measure(y, label); System.out.format("UPGMA rand index = %.2f%%\tadjusted rand index = %.2f%%%n", 100.0 * r, 100.0 * r2); assertTrue(r > 0.1); hc = new HierarchicalClustering(new WPGMALinkage(proximity)); label = hc.partition(10); r = rand.measure(y, label); r2 = ari.measure(y, label); System.out.format("WPGMA rand index = %.2f%%\tadjusted rand index = %.2f%%%n", 100.0 * r, 100.0 * r2); assertTrue(r > 0.2); hc = new HierarchicalClustering(new UPGMCLinkage(proximity)); label = hc.partition(10); r = rand.measure(y, label); r2 = ari.measure(y, label); System.out.format("UPGMC rand index = %.2f%%\tadjusted rand index = %.2f%%%n", 100.0 * r, 100.0 * r2); assertTrue(r > 0.1); hc = new HierarchicalClustering(new WPGMCLinkage(proximity)); label = hc.partition(10); r = rand.measure(y, label); r2 = ari.measure(y, label); System.out.format("WPGMC rand index = %.2f%%\tadjusted rand index = %.2f%%%n", 100.0 * r, 100.0 * r2); assertTrue(r > 0.1); hc = new HierarchicalClustering(new WardLinkage(proximity)); label = hc.partition(10); r = rand.measure(y, label); r2 = ari.measure(y, label); System.out.format("Ward rand index = %.2f%%\tadjusted rand index = %.2f%%%n", 100.0 * r, 100.0 * r2); assertTrue(r > 0.9); assertTrue(r2 > 0.5); } catch (Exception ex) { System.err.println(ex); } } }