/*******************************************************************************
* Copyright (c) 2010 Haifeng Li
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
package smile.clustering;
import smile.clustering.linkage.SingleLinkage;
import smile.clustering.linkage.WPGMCLinkage;
import smile.clustering.linkage.WardLinkage;
import smile.clustering.linkage.UPGMCLinkage;
import smile.clustering.linkage.WPGMALinkage;
import smile.clustering.linkage.UPGMALinkage;
import smile.clustering.linkage.CompleteLinkage;
import smile.math.Math;
import smile.validation.RandIndex;
import smile.validation.AdjustedRandIndex;
import smile.data.AttributeDataset;
import smile.data.NominalAttribute;
import smile.data.parser.DelimitedTextParser;
import org.junit.After;
import org.junit.AfterClass;
import org.junit.Before;
import org.junit.BeforeClass;
import org.junit.Test;
import static org.junit.Assert.*;
/**
*
* @author Haifeng
*/
public class HierarchicalClusteringTest {
public HierarchicalClusteringTest() {
}
@BeforeClass
public static void setUpClass() throws Exception {
}
@AfterClass
public static void tearDownClass() throws Exception {
}
@Before
public void setUp() {
}
@After
public void tearDown() {
}
/**
* Test of learn method, of class GMeans.
*/
@Test
public void testUSPS() {
System.out.println("USPS");
DelimitedTextParser parser = new DelimitedTextParser();
parser.setResponseIndex(new NominalAttribute("class"), 0);
try {
AttributeDataset train = parser.parse("USPS Train", smile.data.parser.IOUtils.getTestDataFile("usps/zip.train"));
double[][] x = train.toArray(new double[train.size()][]);
int[] y = train.toArray(new int[train.size()]);
int n = x.length;
double[][] proximity = new double[n][];
for (int i = 0; i < n; i++) {
proximity[i] = new double[i + 1];
for (int j = 0; j < i; j++) {
proximity[i][j] = Math.distance(x[i], x[j]);
}
}
AdjustedRandIndex ari = new AdjustedRandIndex();
RandIndex rand = new RandIndex();
HierarchicalClustering hc = new HierarchicalClustering(new SingleLinkage(proximity));
int[] label = hc.partition(10);
double r = rand.measure(y, label);
double r2 = ari.measure(y, label);
System.out.format("SingleLinkage rand index = %.2f%%\tadjusted rand index = %.2f%%%n", 100.0 * r, 100.0 * r2);
assertTrue(r > 0.1);
hc = new HierarchicalClustering(new CompleteLinkage(proximity));
label = hc.partition(10);
r = rand.measure(y, label);
r2 = ari.measure(y, label);
System.out.format("CompleteLinkage rand index = %.2f%%\tadjusted rand index = %.2f%%%n", 100.0 * r, 100.0 * r2);
assertTrue(r > 0.75);
hc = new HierarchicalClustering(new UPGMALinkage(proximity));
label = hc.partition(10);
r = rand.measure(y, label);
r2 = ari.measure(y, label);
System.out.format("UPGMA rand index = %.2f%%\tadjusted rand index = %.2f%%%n", 100.0 * r, 100.0 * r2);
assertTrue(r > 0.1);
hc = new HierarchicalClustering(new WPGMALinkage(proximity));
label = hc.partition(10);
r = rand.measure(y, label);
r2 = ari.measure(y, label);
System.out.format("WPGMA rand index = %.2f%%\tadjusted rand index = %.2f%%%n", 100.0 * r, 100.0 * r2);
assertTrue(r > 0.2);
hc = new HierarchicalClustering(new UPGMCLinkage(proximity));
label = hc.partition(10);
r = rand.measure(y, label);
r2 = ari.measure(y, label);
System.out.format("UPGMC rand index = %.2f%%\tadjusted rand index = %.2f%%%n", 100.0 * r, 100.0 * r2);
assertTrue(r > 0.1);
hc = new HierarchicalClustering(new WPGMCLinkage(proximity));
label = hc.partition(10);
r = rand.measure(y, label);
r2 = ari.measure(y, label);
System.out.format("WPGMC rand index = %.2f%%\tadjusted rand index = %.2f%%%n", 100.0 * r, 100.0 * r2);
assertTrue(r > 0.1);
hc = new HierarchicalClustering(new WardLinkage(proximity));
label = hc.partition(10);
r = rand.measure(y, label);
r2 = ari.measure(y, label);
System.out.format("Ward rand index = %.2f%%\tadjusted rand index = %.2f%%%n", 100.0 * r, 100.0 * r2);
assertTrue(r > 0.9);
assertTrue(r2 > 0.5);
} catch (Exception ex) {
System.err.println(ex);
}
}
}