/*******************************************************************************
* Copyright (c) 2010 Haifeng Li
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
package smile.regression;
import smile.math.kernel.PolynomialKernel;
import smile.data.AttributeDataset;
import smile.data.parser.ArffParser;
import org.junit.After;
import org.junit.AfterClass;
import org.junit.Before;
import org.junit.BeforeClass;
import org.junit.Test;
import smile.math.Math;
import smile.validation.CrossValidation;
/**
*
* @author Haifeng Li
*/
public class SVRTest {
public SVRTest() {
}
@BeforeClass
public static void setUpClass() throws Exception {
}
@AfterClass
public static void tearDownClass() throws Exception {
}
@Before
public void setUp() {
}
@After
public void tearDown() {
}
/**
* Test of learn method, of class SVR.
*/
@Test
public void testCPU() {
System.out.println("CPU");
ArffParser parser = new ArffParser();
parser.setResponseIndex(6);
try {
AttributeDataset data = parser.parse(smile.data.parser.IOUtils.getTestDataFile("weka/cpu.arff"));
double[] datay = data.toArray(new double[data.size()]);
double[][] datax = data.toArray(new double[data.size()][]);
Math.standardize(datax);
int n = datax.length;
int k = 10;
CrossValidation cv = new CrossValidation(n, k);
double rss = 0.0;
for (int i = 0; i < k; i++) {
double[][] trainx = Math.slice(datax, cv.train[i]);
double[] trainy = Math.slice(datay, cv.train[i]);
double[][] testx = Math.slice(datax, cv.test[i]);
double[] testy = Math.slice(datay, cv.test[i]);
SVR<double[]> svr = new SVR<>(trainx, trainy, new PolynomialKernel(3, 1.0, 1.0), 0.1, 1.0);
for (int j = 0; j < testx.length; j++) {
double r = testy[j] - svr.predict(testx[j]);
rss += r * r;
}
}
System.out.println("10-CV RMSE = " + Math.sqrt(rss / n));
} catch (Exception ex) {
System.err.println(ex);
}
}
}