/******************************************************************************* * Copyright (c) 2010 Haifeng Li * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ package smile.regression; import smile.math.kernel.PolynomialKernel; import smile.data.AttributeDataset; import smile.data.parser.ArffParser; import org.junit.After; import org.junit.AfterClass; import org.junit.Before; import org.junit.BeforeClass; import org.junit.Test; import smile.math.Math; import smile.validation.CrossValidation; /** * * @author Haifeng Li */ public class SVRTest { public SVRTest() { } @BeforeClass public static void setUpClass() throws Exception { } @AfterClass public static void tearDownClass() throws Exception { } @Before public void setUp() { } @After public void tearDown() { } /** * Test of learn method, of class SVR. */ @Test public void testCPU() { System.out.println("CPU"); ArffParser parser = new ArffParser(); parser.setResponseIndex(6); try { AttributeDataset data = parser.parse(smile.data.parser.IOUtils.getTestDataFile("weka/cpu.arff")); double[] datay = data.toArray(new double[data.size()]); double[][] datax = data.toArray(new double[data.size()][]); Math.standardize(datax); int n = datax.length; int k = 10; CrossValidation cv = new CrossValidation(n, k); double rss = 0.0; for (int i = 0; i < k; i++) { double[][] trainx = Math.slice(datax, cv.train[i]); double[] trainy = Math.slice(datay, cv.train[i]); double[][] testx = Math.slice(datax, cv.test[i]); double[] testy = Math.slice(datay, cv.test[i]); SVR<double[]> svr = new SVR<>(trainx, trainy, new PolynomialKernel(3, 1.0, 1.0), 0.1, 1.0); for (int j = 0; j < testx.length; j++) { double r = testy[j] - svr.predict(testx[j]); rss += r * r; } } System.out.println("10-CV RMSE = " + Math.sqrt(rss / n)); } catch (Exception ex) { System.err.println(ex); } } }