/******************************************************************************* * Copyright (c) 2010 Haifeng Li * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ package smile.neighbor; import java.util.ArrayList; import java.util.Collections; import java.util.List; import org.junit.After; import org.junit.AfterClass; import org.junit.Before; import org.junit.BeforeClass; import org.junit.Test; import static org.junit.Assert.*; import smile.math.Math; import smile.math.distance.EuclideanDistance; /** * * @author Haifeng Li */ public class KDTreeTest { double[][] data = null; KDTree<double[]> kdtree = null; LinearSearch<double[]> naive = null; public KDTreeTest() { data = new double[10000][]; for (int i = 0; i < data.length; i++) { data[i] = new double[10]; for (int j = 0; j < data[i].length; j++) data[i][j] = Math.random(); } kdtree = new KDTree<>(data, data); naive = new LinearSearch<>(data, new EuclideanDistance()); } @BeforeClass public static void setUpClass() throws Exception { } @AfterClass public static void tearDownClass() throws Exception { } @Before public void setUp() { } @After public void tearDown() { } /** * Test of nearest method, of class KDTree. */ @Test public void testNearest() { System.out.println("nearest"); for (int i = 0; i < data.length; i++) { Neighbor<double[], double[]> n1 = kdtree.nearest(data[i]); Neighbor<double[], double[]> n2 = naive.nearest(data[i]); assertEquals(n1.index, n2.index); assertEquals(n1.value, n2.value); assertEquals(n1.distance, n2.distance, 1E-7); } } /** * Test of knn method, of class KDTree. */ @Test public void testKnn() { System.out.println("knn"); for (int i = 0; i < data.length; i++) { Neighbor<double[], double[]> [] n1 = kdtree.knn(data[i], 10); Neighbor<double[], double[]> [] n2 = naive.knn(data[i], 10); for (int j = 0; j < n1.length; j++) { assertEquals(n1[j].index, n2[j].index); assertEquals(n1[j].value, n2[j].value); assertEquals(n1[j].distance, n2[j].distance, 1E-7); } } } /** * Test of range method, of class KDTree. */ @Test public void testRange() { System.out.println("range 0.5"); List<Neighbor<double[], double[]>> n1 = new ArrayList<>(); List<Neighbor<double[], double[]>> n2 = new ArrayList<>(); for (int i = 0; i < data.length; i++) { kdtree.range(data[i], 0.5, n1); naive.range(data[i], 0.5, n2); Collections.sort(n1); Collections.sort(n2); assertEquals(n1.size(), n2.size()); for (int j = 0; j < n1.size(); j++) { assertEquals(n1.get(j).index, n2.get(j).index); assertEquals(n1.get(j).value, n2.get(j).value); assertEquals(n1.get(j).distance, n2.get(j).distance, 1E-7); } n1.clear(); n2.clear(); } } /** * Test of range method, of class KDTree. */ @Test public void testRange2() { System.out.println("range 1.5"); List<Neighbor<double[], double[]>> n1 = new ArrayList<>(); List<Neighbor<double[], double[]>> n2 = new ArrayList<>(); for (int i = 0; i < data.length; i++) { kdtree.range(data[i], 1.5, n1); naive.range(data[i], 1.5, n2); Collections.sort(n1); Collections.sort(n2); assertEquals(n1.size(), n2.size()); for (int j = 0; j < n1.size(); j++) { assertEquals(n1.get(j).index, n2.get(j).index); assertEquals(n1.get(j).value, n2.get(j).value); assertEquals(n1.get(j).distance, n2.get(j).distance, 1E-7); } n1.clear(); n2.clear(); } } }