/*******************************************************************************
* Copyright (c) 2010 Haifeng Li
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
package smile.neighbor;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import org.junit.After;
import org.junit.AfterClass;
import org.junit.Before;
import org.junit.BeforeClass;
import org.junit.Test;
import static org.junit.Assert.*;
import smile.math.Math;
import smile.math.distance.EuclideanDistance;
/**
*
* @author Haifeng Li
*/
public class KDTreeTest {
double[][] data = null;
KDTree<double[]> kdtree = null;
LinearSearch<double[]> naive = null;
public KDTreeTest() {
data = new double[10000][];
for (int i = 0; i < data.length; i++) {
data[i] = new double[10];
for (int j = 0; j < data[i].length; j++)
data[i][j] = Math.random();
}
kdtree = new KDTree<>(data, data);
naive = new LinearSearch<>(data, new EuclideanDistance());
}
@BeforeClass
public static void setUpClass() throws Exception {
}
@AfterClass
public static void tearDownClass() throws Exception {
}
@Before
public void setUp() {
}
@After
public void tearDown() {
}
/**
* Test of nearest method, of class KDTree.
*/
@Test
public void testNearest() {
System.out.println("nearest");
for (int i = 0; i < data.length; i++) {
Neighbor<double[], double[]> n1 = kdtree.nearest(data[i]);
Neighbor<double[], double[]> n2 = naive.nearest(data[i]);
assertEquals(n1.index, n2.index);
assertEquals(n1.value, n2.value);
assertEquals(n1.distance, n2.distance, 1E-7);
}
}
/**
* Test of knn method, of class KDTree.
*/
@Test
public void testKnn() {
System.out.println("knn");
for (int i = 0; i < data.length; i++) {
Neighbor<double[], double[]> [] n1 = kdtree.knn(data[i], 10);
Neighbor<double[], double[]> [] n2 = naive.knn(data[i], 10);
for (int j = 0; j < n1.length; j++) {
assertEquals(n1[j].index, n2[j].index);
assertEquals(n1[j].value, n2[j].value);
assertEquals(n1[j].distance, n2[j].distance, 1E-7);
}
}
}
/**
* Test of range method, of class KDTree.
*/
@Test
public void testRange() {
System.out.println("range 0.5");
List<Neighbor<double[], double[]>> n1 = new ArrayList<>();
List<Neighbor<double[], double[]>> n2 = new ArrayList<>();
for (int i = 0; i < data.length; i++) {
kdtree.range(data[i], 0.5, n1);
naive.range(data[i], 0.5, n2);
Collections.sort(n1);
Collections.sort(n2);
assertEquals(n1.size(), n2.size());
for (int j = 0; j < n1.size(); j++) {
assertEquals(n1.get(j).index, n2.get(j).index);
assertEquals(n1.get(j).value, n2.get(j).value);
assertEquals(n1.get(j).distance, n2.get(j).distance, 1E-7);
}
n1.clear();
n2.clear();
}
}
/**
* Test of range method, of class KDTree.
*/
@Test
public void testRange2() {
System.out.println("range 1.5");
List<Neighbor<double[], double[]>> n1 = new ArrayList<>();
List<Neighbor<double[], double[]>> n2 = new ArrayList<>();
for (int i = 0; i < data.length; i++) {
kdtree.range(data[i], 1.5, n1);
naive.range(data[i], 1.5, n2);
Collections.sort(n1);
Collections.sort(n2);
assertEquals(n1.size(), n2.size());
for (int j = 0; j < n1.size(); j++) {
assertEquals(n1.get(j).index, n2.get(j).index);
assertEquals(n1.get(j).value, n2.get(j).value);
assertEquals(n1.get(j).distance, n2.get(j).distance, 1E-7);
}
n1.clear();
n2.clear();
}
}
}